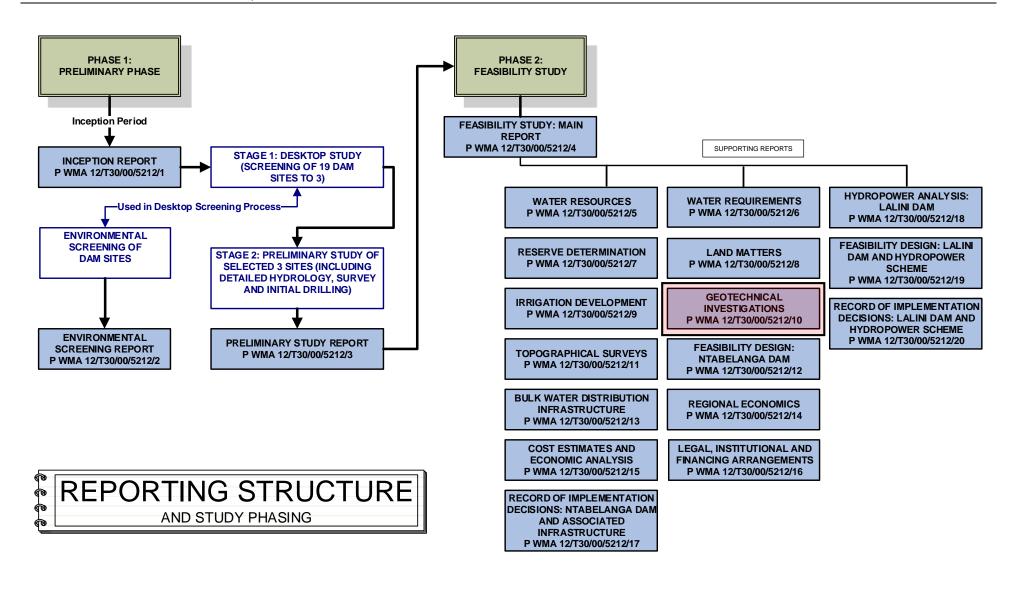


DIRECTORATE: OPTIONS ANALYSIS

FEASIBILITY STUDY FOR THE MZIMVUBU WATER PROJECT

GEOTECHNICAL INVESTIGATIONS:


NTABELANGA, SOMABADI AND THABENG DAM SITES

APPENDICES

LIST OF REPORTS

REPORT TITLE	DWS REPORT NUMBER		
Inception Report	P WMA 12/T30/00/5212/1		
Environmental Screening	P WMA 12/T30/00/5212/2		
Preliminary Study	P WMA 12/T30/00/5212/3		
Feasibility Study: Main Report			
Volume 1: Report	P WMA 12/T30/00/5212/4		
Volume 2: Book of Drawings			
FEASIBILITY STUDY: SUPPORTING REPORTS:			
Water Resources	P WMA 12/T30/00/5212/5		
Water Requirements	P WMA 12/T30/00/5212/6		
Reserve Determination			
Volume 1: River	D W/MA 12/T20/00/5212/7		
Volume 2: Estuary: Report	P WMA 12/T30/00/5212/7		
Volume 3 :Estuary: Appendices			
Land Matters	P WMA 12/T30/00/5212/8		
Irrigation Development	P WMA 12/T30/00/5212/9		
Geotechnical Investigations	P WMA 12/T30/00/5212/10		
Volume 1: Ntabelanga, Somabadi and Thabeng Dam Sites:			
Report			
Volume 2: Ntabelanga, Somabadi and Thabeng Dam Sites: Appendices			
Volume 3: Lalini Dam and Hydropower Scheme: Report			
Volume 4: Lalini Dam and Hydropower Scheme: Appendices			
Topographical Surveys	P WMA 12/T30/00/5212/11		
Feasibility Design: Ntabelanga Dam	P WMA 12/T30/00/5212/12		
Bulk Water Distribution Infrastructure	P WMA 12/T30/00/5212/13		
Regional Economics	P WMA 12/T30/00/5212/14		
Cost Estimates and Economic Analysis	P WMA 12/T30/00/5212/15		
Legal, Institutional and Financing Arrangements	P WMA 12/T30/00/5212/16		
Record of Implementation Decisions: Ntabelanga Dam and Associated Infrastructure	P WMA 12/T30/00/5212/17		
Hydropower Analysis: Lalini Dam	P WMA 12/T30/00/5212/18		
Feasibility Design: Lalini Dam and Hydropower Scheme	P WMA 12/T30/00/5212/19		
Record of Implementation Decisions: Lalini Dam and Hydropower Scheme	P WMA 12/T30/00/5212/20		

DIRECTORATE: OPTIONS ANALYSIS OCTOBER 2014

REFERENCE

This report is to be referred to in bibliographies as:

Department of Water and Sanitation (2014). Feasibility Study for the Mzimvubu Water Project: Geotechnical Investigations: Ntabelanga, Somabadi and Thabeng Dam Sites: Appendices

DWS Report No: P WMA 12/T30/00/5212/10

Prepared for: Directorate - Options Analysis

Prepared by: Jeffares & Green (Pty) Ltd, P O Box 794, Hilton, 3245

Tel: 033 343 6700, Fax: 033 343 6701

Contact: Mr A Pepperell Email: pepperella@jgi.co.za

Note on Departmental Name Change:

In 2014, the Department of Water Affairs changed its name to the Department of Water and Sanitation, which happened during the course of this study. In some cases this was after some of the study reports had been finalized. The reader should therefore kindly note that references to the Department of Water Affairs and the Department of Water and Sanitation herein should be considered to be one and the same.

Note on Spelling of Laleni:

The settlement named Laleni on maps issued by the Surveyor General is locally known as Lalini and both names therefore refer to the same settlement.

TABLE OF APPENDICES

APPENDIX A: PHASE 1 SITE PLANS

APPENDIX B: PHASE 1 DAM SITE VISUAL APPRAISALS

ANNEXURE B1: THABENG DAM SITE
ANNEXURE B2: SOMABADI DAM SITE
ANNEXURE B3: NTABELANGA DAM SITE

APPENDIX C: PHASE 1 ROTARY CORE DRILLING INVESTIGATION

ANNEXURE C1: THABENG DAM SITE
ANNEXURE C2: SOMABADI DAM SITE
ANNEXURE C3: NTABELANGA DAM SITE

APPENDIX D: PHASE 2 SITE PLANS

APPENDIX E: PHASE 2 BOREHOLE LOGS

APPENDIX F: COUNCIL FOR GEOSCIENCE REPORT ON SEISMIC

REFRACTION AND ELECTRICAL RESISTIVITY

SURVEYS

APPENDIX G: TRIAL PIT PROFILE DESCRIPTIONS

ANNEXURE G1: DAM TRIAL PITS

ANNEXURE G2: SPILLWAY TRIAL PITS ANNEXURE G3: SADDLE DAM TRIAL PITS

ANNEXURE G4: CORE BORROW PIT TRIAL PITS ANNEXURE G5: SHELL BORROW PIT TRIAL PITS

APPENDIX H: LABORATORY TEST RESULTS

ANNEXURE H1: UCS

ANNEXURE H2: PETROGRAPHIC

ANNEXURE H3: INDICATOR AND STANDARD PROCTOR m/d

ANNEXURE H4: DISPERSIVENESS

ANNEXURE H5: TRIAXIAL

ANNEXURE H6: CONSOLIDATION ANNEXURE H7: PERMIABILITY

ANNEXURE H8: SAND ANNEXURE H9: WATER

APPENDIX I: LONGITUDINAL SECTION SHOWING RECOMMENDED

CUT-OFF EXCAVATION

APPENDIX A PHASE 1 SITE PLANS

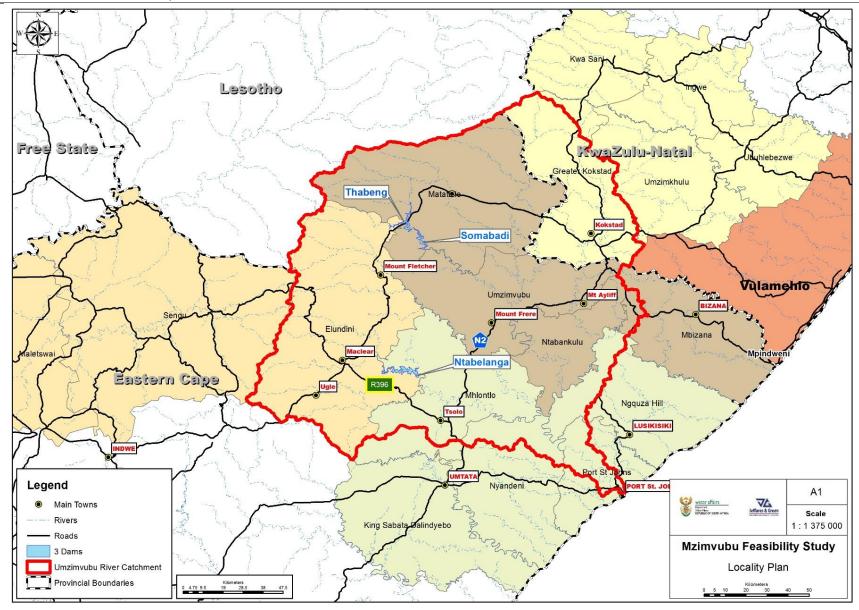


Fig A-1: Locality Plan

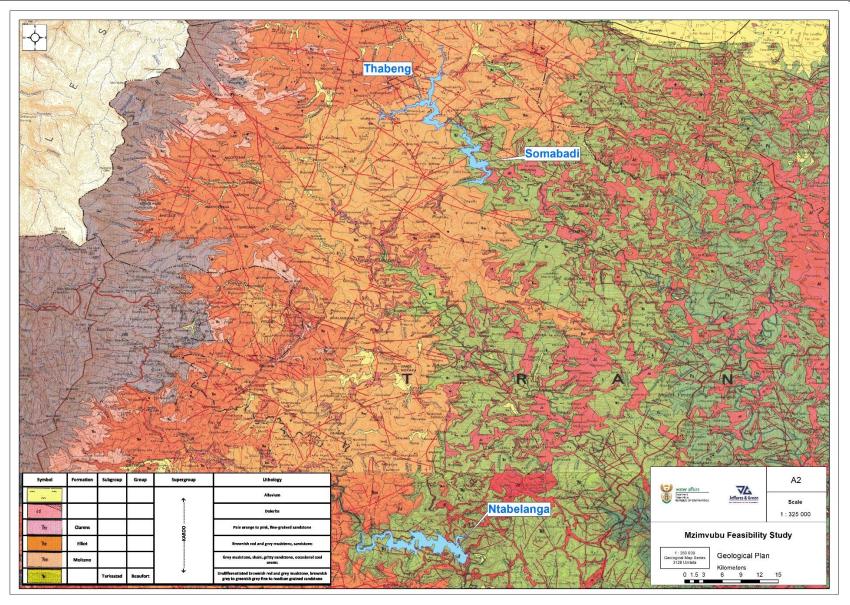


Fig A-2: Geological Plan

A- 3

DIRECTORATE: OPTIONS ANALYSIS

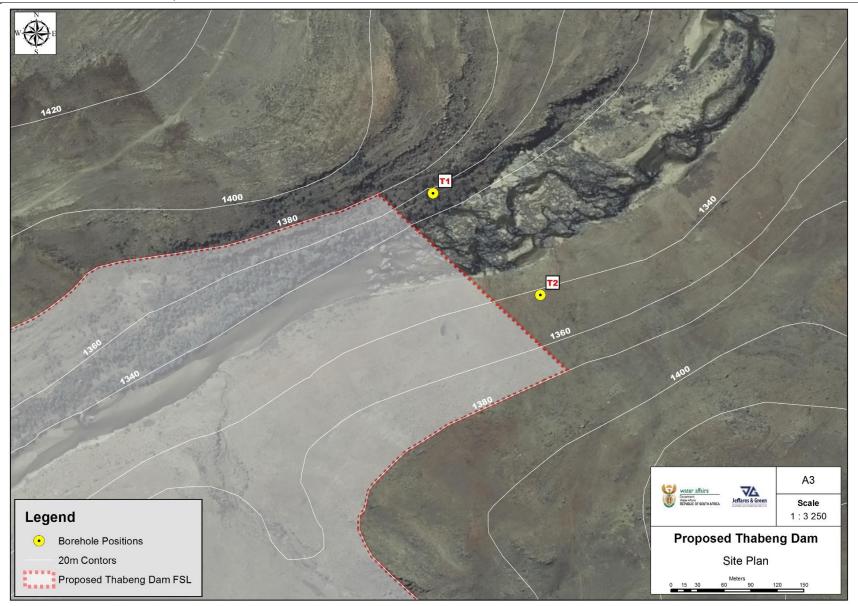


Fig A-3: Thabeng Dam Site Plan

A- 4

DIRECTORATE: OPTIONS ANALYSIS

Fig A-4: Somabadi Dam Site Plan

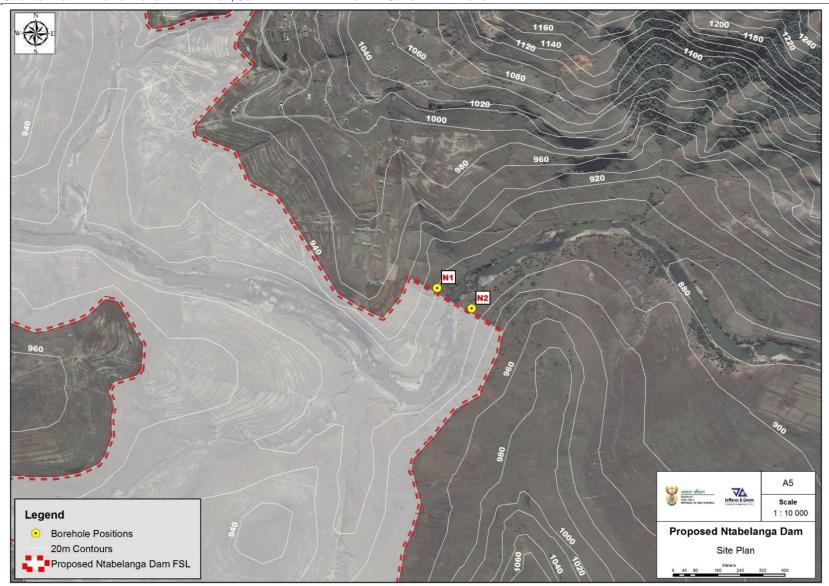


Fig A-5: Ntabelanga Dam Site Plan

A- 6

APPENDIX B

PHASE 1 DAM SITE VISUAL APPRAISALS

B1:

THABENG DAM SITE

STAGE 1 GEOTECHNICAL ASSESSMENT

DAM SITE NAME: Thabeng **RIVER**: Kinira

DAM LENGTH: Approx. 280m **DAM HEIGHT**: Approx. 53m

GPS CO-ORD ON RIVER: S 30°29'45.51"; E 28°38'22.49"; ELEV. 1347m

APPROX C/L ORIENTATION: NW - SE

TOPOGRAPHY (valley shape, steepness)

LEFT FLANK:

Very steep to precipitous in places

RIVER SECTION:

Steep U-shaped profile. Both flanks rise steeply from the river.

RIGHT FLANK:

Steep, consistent to slightly convex slope.

GEOLOGICAL INFLUENCE:

Dolerite sill through river section and up the right flank. Dolerite on left flank is thinner and not as prevalent so that founding is likely to be in both dolerite and sandstone.

BASIN MORPHOLOGY:

Just upstream of the dam the river flows in a steep sided valley. Further upstream in the mid to upper backwater reaches the topography moderates. The geology comprises predominantly sandstone, as well as mudrock of the Molteno Formation.

GEOLOGY

OUTCROP:

Dolerite outcrop in the river section.

JOINTS (no, condition, spacing, orientation):

Orthogonal joints sets, two sub-vertical and one sub-horizontal. Comprise moderate and high angle subvertical joints that dip upstream and downstream respectively. Major strike direction is NW – SE.

STRUCTURAL FEATURES (dykes, faults, lineaments)

AERIAL PHOTOS, MAPS:

No apparent linear features suggesting faults or other structural lineaments. Stereoscopic aerial photographic interpretation was not undertaken, as the other information was deemed adequate.

OBSERVED:

Dolerite strike is NW - SE.

SOIL COVER:

Thin soil cover with sub-outcrop on the flanks.

FOUNDING, STABILITY, PROBLEM AREAS, OTHER:

Good founding on dolerite through the river section and right flank. The left flank is underlain by dolerite as well as by sandstone and intercalated mudrock. Pronounced bedding in the sedimentary rocks, whilst appearing tight, could lead to higher grout takes on the left flank.

BASIN GEOL:

Mainly sandstone with intercalated mudrock. Occasional dolerite dykes in the basin. Dolerite sills were only evident in the upper reaches of the basin.

CONSTRUCTION MATERIALS

CLAY:

No source of core material identified in the impoundment basin during this initial assessment, but the presence of mudrock of the Molteno Formation in the basin suggests that suitable core material is likely to be available. Mudrock of the Tarkastad Formation is plentiful downstream of the dam site. In addition, reddish brown, clayey colluvial soils associated with dolerite occur downstream of the dam.

SOIL / ROCK FILL:

Core trench excavation and dolerite rock quarry

SAND (concrete, filter):

River sand. Extensive deposits of sand occur upstream of the dam near to Kinira Drift.

ROCK (concrete, rip-rap):

Dolerite quarry. Initial indications suggest a paucity of suitable dolerite quarry sites in the basin, but there is an extensive body of dolerite downstream of the dam.

PROBLEM AREAS:

At this stage indications are that the most suitable sources of core and rock aggregate occur downstream of the dam, consequently with higher environmental impacts effecting their exploitation, as they would ultimately not be inundated following impoundment and would require rehabilitation.

INFRASTRUCTURE

ROADS:

A number of roads will be inundated including the R56, the Kinira Drift road and the road to Pontseng / Lekhalaneng.

HOUSES:

A water treatment works being constructed near Kinira Drift, as well as associated pipelines would be inundated. There is also a weir and gauging station at Kinira Drift.

CULTIVATION:

Due to the relatively narrow impoundment basin and limited cultivation, inundation of cultivated areas in the lower reaches would be limited. Inundation of cultivation would occur around Kinira Drift and possibly upstream of the main road.

FURTHER INVESTIGATIONS

BOREHOLES (where, access):

Rotary core drilling will be required along the dam centre-line, spillway, appurtenant structures and to prove a rock quarry. Access along the dam axis is difficult due to the steep topography.

TRIAL PITS (where, access):

Access for mechanical excavating equipment will be restricted along the dam centre-line due to the steep topography, especially along the left flank. This will be a limiting factor to the undertaking of centre-line trial pitting. Trial pits would be required to prove construction material volumes and quality.

GEOPHYSICS:

A seismic refraction survey is recommended along the dam axis, with transverse traverses at the positions of structures and to pick up stratigraphic dip.

OTHER:

Joint orientation surveys, stability analyses, aerial photographic interpretation if deemed necessary, rock strength testing, materials testing, water pressure testing and analysis of grouting requirements, dam and basin mapping.

Quarry and borrow pit investigations.

ADVANTAGES OF SITE:

Good valley profile, which lends itself to either earth-fill, rockfill or concrete dam construction.

Good founding on dolerite in the river section and right flank. The cut-off on the left flank is likely to be in a combination of dolerite and sedimentary rocks.

Joints in the dolerite appear to be tight, resulting in low seepage losses and low grout takes.

The basin topography contributes to a high storage to area ratio thereby minimising evaporation losses.

DISADVANTAGES OF SITE:

Difficult access due to steep valley sides, particularly along the left flank.

Based upon this initial assessment potential sources of core and rock aggregate do not appear to be readily available in the basin, although they occur a short distance downstream.

Inundation of infrastructure in the basin would occur, including a water treatment works currently under construction.

GENERAL

No fatal flaws were identified in respect of the dam site and founding conditions.

The valley profile is suitable for an earth embankment, rockfill or concrete dam.

This suitability assessment is based solely on geotechnical parameters and does not consider the other interrelated criteria such as hydrology, engineering or socio-economic factors. It also does not consider the site location relative to end user requirements.

B2:

SOMABADI DAM SITE

STAGE 1 GEOTECHNICAL ASSESSMENT

DAM SITE NAME: Somabadi RIVER: Kinira

DAM LENGTH: Approx. 630m **DAM HEIGHT:** Approx. 59m

GPS CO-ORD ON RIVER: S 30°34'59.79"; E 28°41'35.5"; ELEV. 1276m

APPROX C/L ORIENTATION: NE - SW

TOPOGRAPHY (valley shape, steepness)

LEFT FLANK:

Initially steep and then a wide terrace and again becoming steep

RIVER SECTION:

U-shaped. Steep banks.

RIGHT FLANK:

Very steep, consistent slope

GEOLOGICAL INFLUENCE:

Sandstone outcrop in the riverbed and in the river banks. Sub-outcrop of sandstone on the right flank and a major proportion of the left flank. Dolerite occurs on the upper left flank.

BASIN MORPHOLOGY:

Variable, ranging from steep valley sides to moderately flat.

GEOLOGY

OUTCROP:

Sandstone outcrop in the river section.

JOINTS (no, condition, spacing, orientation):

Pronounced bedding in the sandstone dipping at a low angle in a downstream direction.

STRUCTURAL FEATURES (dykes, faults, lineaments)

AERIAL PHOTOS, MAPS: No observed linear features to suggest faults or structural lineaments.

OBSERVED: None.

SOIL COVER: Generally thin

FOUNDING, STABILITY, PROBLEM AREAS, OTHER:

Good founding on sandstone. Pronounced bedding partings are potentially conducive to seepage losses and may result in relatively high grout takes.

BASIN GEOL:

Tarkastad Formation sandstone and mudrock, with intrusive dolerite.

CONSTRUCTION MATERIALS

CLAY:

Mudrock occurs in abundance in the basin. Red-brown colluvial soils of doleritic oroigin occur in abundance on the high lying area to the north-east of the dam.

SOIL / ROCK FILL:

Sandstone and dolerite from foundation excavations and a rock quarry. An elevated saddle on the left flank could be excavated to create an off-channel spillway and to generate dolerite material.

SAND (concrete, filter):

River sand from upstream, of which there are a number of deposits

ROCK (concrete, rip-rap):

Dolerite quarry.

PROBLEM AREAS:

No apparent problems in respect of materials.

INFRASTRUCTURE

ROADS:

A number of roads would be inundated.

HOUSES:

This was not ascertained in this assessment.

CULTIVATION:

Extensive areas of cultivation in the basin would be inundated.

BOREHOLES (where, access):

Rotary core drilling would be required along the dam axis, spillway, appurtenant structures and to prove potential rock quarry sites. Drilling could possibly also be undertaken in the saddle area adjacent to the upper left flank to prove the feasibility of creating an off-channel spillway, which could duplicate as a rock quarry.

TRIAL PITS (where, access):

Difficult access along most of the dam axis, especially the right flank may curtail the successful undertaking of trial pits along the entire dam axis. Trial pits would be required to investigate appurtenant works and to prove borrow pits.

GEOPHYSICS:

Seismic refraction traverses along and transverse to the dam axis.

OTHER:

Joint orientation surveys, stability analyses, rock strength testing, materials testing, water pressure testing, dam and basin mapping, aerial photographic interpretation if deemed necessary, quarry and borrow pit investigations.

ADVANTAGES OF THE SITE:

Good valley profile.

Good founding on sandstone.

A saddle adjacent to the upper left flank has the potential to be excavated as a rock quarry and to serve as an off-channel spillway. Further investigation would be required to verify the feasibility of this.

Construction materials appear to be readily available within relatively close proximity to the dam.

DISADVANTAGES OF THE SITE:

There is difficult access along the dam axis due to steep valley sides. Pronounced bedding planes imply possible high grout takes. Inundation of roads and cultivation would occur.

GENERAL

No fatal flaws identified.

The valley profile and founding conditions are suitable for a number of dam alternatives including earth embankment, rockfill and concrete.

This assessment entailed a suitability assessment based solely on geotechnical parameters. It does not consider the other inter-related criteria, such as hydrology, engineering and socio-economic aspects that will ultimately influence the feasibility of this site. It also does not consider the site location relative to end-user requirements.

B3:

NTABELANGA DAM SITE

STAGE 1 GEOTECHNICAL ASSESSMENT

DAM SITE NAME: Ntabelanga RIVER: Tsitsa

DAM LENGTH: Approx. 350m **DAM HEIGHT:** Approx. 53m

GPS CO-ORD ON RIVER: S31°07'01.18"; E 28°40'20.7"; ELEV. 898m

APPROX C/L ORIENTATION: NW - SE

TOPOGRAPHY (valley shape, steepness)

LEFT FLANK:

Steep consistent to slightly convex slope rising from the river

RIVER SECTION:

U-shaped profile with the channel skewed towards the left flank. Dolerite outcrop across the river and in the left bank. Steep incline up the left flank. Gentle to moderately sloping terrace extends from the right bank, thereafter steepening up the right flank.

RIGHT FLANK:

There is a narrow terrace extending from the river bank, steepening into a concavo-convex slope at the bottom becoming convex, at a generally steep gradient.

GEOLOGICAL INFLUENCE:

Dolerite sill outcropping in the river section. Dolerite outcrop and sub-outcrop up the right flank. Dolerite on the left flank occurs beneath a cover of soil. The top of the left flank is underlain by sandstone.

BASIN MORPHOLOGY:

Variable topography comprising mainly sedimentary rocks of the Tarkastad Formation, with dolerite intrusions generally forming positive relief features.

GEOLOGY

OUTCROP:

Dolerite outcrops in the river section and on the mid to upper right flank

JOINTS (no, condition, spacing, orientation):

Three main orthogonal joints sets, two sub-vertical and one sub-horizontal. Sub-vertical joints comprise an obliquely striking joint dipping steeply upstream and a diagonal, near-vertical joint. The sub-horizontal joint dips moderately from right to left.

STRUCTURAL FEATURES (dykes, faults, lineaments)

AERIAL PHOTOS, MAPS:

No observed linear features to suggest faults or structural lineaments. Stereoscopic aerial photo interpretation on stereo-pairs was not undertaken, as the existing information was deemed adequate.

OBSERVED:

There is a cross-cutting dolerite sill and valley constriction at the dam site. No linear features observed in the vicinity of the dam.

SOIL COVER:

Thin to moderate soil cover on the left flank. The river terrace on the right flank is covered by alluvium, comprising soil and boulders of unknown thickness. The mid to upper right flank is characterised by dolerite outcrop and sub-outcrop.

FOUNDING, STABILITY, PROBLEM AREAS, OTHER:

Founding conditions appear to be good. Based upon the surface indications it is presumed that the cut-off will be in dolerite bedrock at relatively shallow depth. Foundations on the upper left flank will be in sandstone. Inundation and resultant saturation could induce small-scale slope instability in the left hand side river bank a few hundred metres upstream of the dam.

BASIN GEOLOGY:

Mainly sedimentary rocks, comprising mudrock and sandstone.

CONSTRUCTION MATERIALS

CLAY:

Purple mudrock occurs in abundance in the basin just upstream of the dam. Reddish brown colluvial soil of doleritic origin are also evident in the basin just upstream of the dam.

SOIL / ROCK FILL:

Dolerite rock / weathered dolerite from the dam foundations, as well as from potential dolerite quarry sites in the basin upstream of the dam. Sandstone and possibly mudrock could be considered for use as embankment fill.

SAND (concrete, filters):

River sand from upstream. Whilst high river flow at the time of the assessment prevented a detailed assessment, there appears to be a potential source of alluvial sand upstream of the dam in the vicinity of the low level bridge crossing. A further reconnaissance is required during periods of low flow to optimise location.

ROCK (concrete, rip-rap, filters):

Dolerite occurs in relative abundance in the basin and it is recommended that further reconnaissance be undertaken to identify a potential dolerite quarry within the basin. There also appears to be potential for forming the top of the right flank into an off-channel spillway with the excavation duplicating as a rock quarry.

PROBLEM AREAS:

No apparent problems in respect of materials.

INFRASTRUCTURE

ROADS:

Roads, including an upstream river crossing would be inundated.

HOUSES:

The effect on houses was not ascertained as the FSL had not been delineated.

CULTIVATION:

Extensive areas of cultivation would be inundated.

BOREHOLES (where, access):

Rotary core drilling would be required along the dam axis, at the spillway, structures and to prove a rock quarry. Both flanks are steep, necessitating difficult skid set-ups.

TRIAL PITS (where, access):

Trial pits by means of an excavator / TLB along the dam centre-line and in potential borrow pits. Machine access to both flanks, particularly the left flank, will be extremely difficult and may preclude trial pits along sections of the dam axis.

GEOPHYSICS:

A seismic refraction survey with traverses orientated parallel and transverse to the dam centre-line and to include the positions of the spillway, intake and outlet works.

OTHER:

Joint orientation surveys, stability analyses, possibly aerial photographic interpretation if subsequently deemed necessary, dam and basin mapping to identify potential problems and influence factors, rock strength testing, materials testing, water pressure testing and analysis of grouting requirements.

Quarry and borrow pit investigations.

ADVANTAGES OF THE SITE:

Good valley profile.

Good founding on dolerite, with indications of a relatively shallow cut-off.

Whilst joints are high angle, they appear tight, so that seepage losses and grout takes are not expected to be excessive.

Whilst requiring further assessment, excavating an off-channel spillway into the right flank could double as a rock quarry.

Construction materials appear to be readily available in the basin.

DISADVANTAGES OF THE SITE:

Access along the dam axis for mechanical plant will generally be difficult due to steep valley sides. There will be inundation of cultivation and roads in the basin.

GENERAL

No fatal flaws identified.

The observed conditions in respect of the site cross-sectional profile and the apparent founding conditions appear to lend themselves to a number of dam options, namely earthfill, rockfill or concrete.

This assessment entailed a suitability assessment based solely on geotechnical parameters. It does not consider the other inter-related criteria, such as hydrology, engineering and socio-economic aspects that will ultimately influence the feasibility of this site. It also does not consider the site location relative to end-user requirements.

APPENDIX C

PHASE 1 ROTARY CORE DRILLING INVESTIGATION

C1:

THABENG DAM SITE

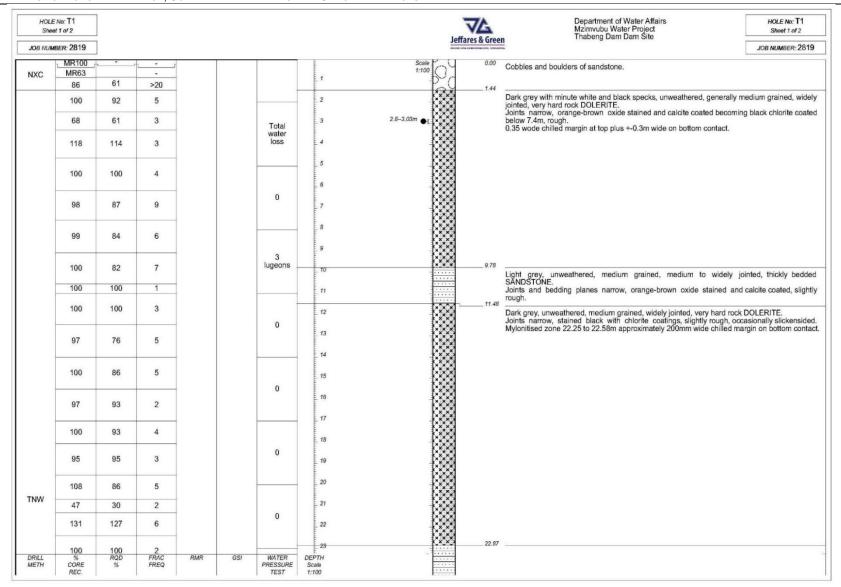


Fig C-1.1: Borehole Logs (T1)

C - 2

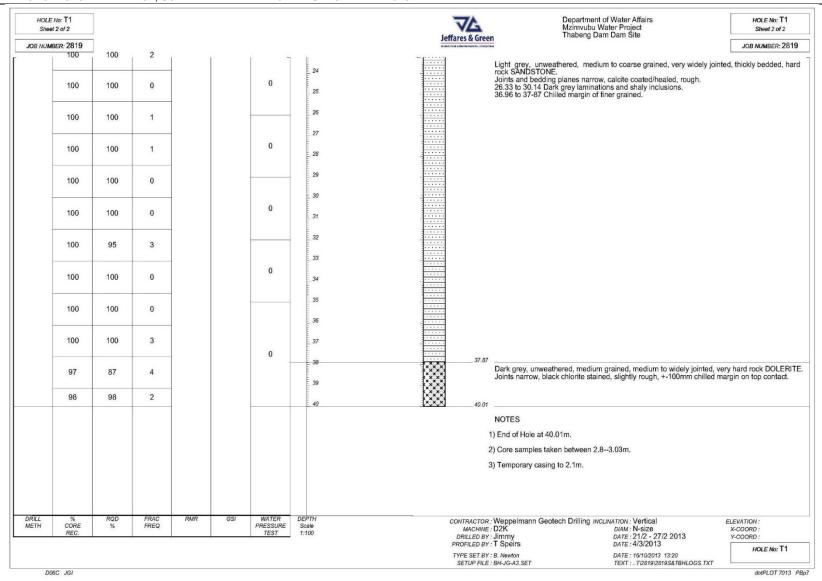


Fig C-1.2: Borehole Logs (T1)

OCTOBER 2014

C - 3

Silverton Pretoria 0184

605 Moreleta Str

cell: W Coventry

Report on Waterpresure Testing:0828091797 BOREHOLE NR: T 1

SCHEME: Mzimvubu Water Project

DRILLER: Jimmy

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
-	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
Double	FROM: 5.00m	10min	45	45	54676.2-54749.7= 73.5lt
		10min	80	80	54753.8-54842.6= 88.8lt
	TO: 8.00m	10min	115	115	54847.8-54931.8= 84lt
		10min	80	80	54933.9- 54941.3= 7.4lt
		10min	45	45	54942.3-54959.3= 1.7lt
Double	FROM: 8.00m	10min	70	70	10lt
		10min	130	130	76.7lt
	TO: 11.00m	10min	180	180	79.5lt
		10min	130	130	13.1lt
		10min	70	70	4.7lt
	FROM: 11.00m	10min	100	100	4.3lt
		10min	170	170	6.9lt
Double	TO: 14.00m	10min	250	250	2.6lt
		10min	170	170	2.7lt
		10min	100	100	1.7lt
	FROM: 14.00m	10min	125	125	4.1lt
		10min	220	220	1.6lt
Double	TO: 17.00m	10min	320	320	3.2lt
		10min	220	220	1.9lt
		10min	125	125	Olt
	FROM; 17.00m	10min	155	155	Olt
		10min	270	270	Olt
Double	TO: 20.00m	10min	385	385	Olt
		10min	270	270	Olt
		10min	155	155	Olt
	FROM: 20.00m	10min	180	180	Olt
		10min	320	320	Olt
Double	TO: 23.00m	10min	450	450	Olt
		10min	320	320	Olt
		10min	180	180	Olt
	FROM: 23.00m	10min	210	210	Olt
		10min	365	365	Olt
Double	TO: 26.00m	10min	520	520	Olt
		10min	365	365	Olt
		10min	210	210	Olt
	FROM: 26.00m	10min	235	235	Olt
	TO 00 00	10min	410	410	Olt
Double	TO: 29.00m	10min	590	590	Olt
		10min	410	410	Olt
	EDOM: 20.00	10min 10min	235	235	Olt
	FROM: 29.00m		265	265	Olt
Double	TO: 32.00m	10min 10min	460 655	460 655	2.5lt 52.3lt
Double	10. 32.00m	10min	460	460	5.6lt
		10min	265	265	Olt
	FROM: 32.00m	10min	290	290	55404.2-55404.2= 0lt
	1 (Colvi. 52.00/II	10min	510	510	55407.5-55408.9= 1.4lt
Double	TO: 35.00m	10min	725	725	55416.3-55470.2= 59.9lt
	10.00.0011	10min	510	510	55481.0-55523.2= 42.2lt
		10min	725	725	55525.4-55526.1= 0.7lt
	FROM: 35.00m	10min	315	315	55544.0-55544.0= 0lt
Single	1 1.Colvi. 00.00mi	10min	555	555	55548.5-55556.1= 7.6lt
	TO: END OF	10min	790	790	55561.6-55581.6= 20.0lt
	BOREHOLE	10min	555	555	55585.8-55588.3= 4.5lt
	DOTTETIOLE	10min	315	315	55589.2-55590.9= 1.7lt
	al water loss 2.00m to	. Ottober			1.71t

Fig C-2: Water Pressure Testing Report (T1)

Fig C-3: Borehole T1 Core Box 1 of 6

Fig C-4: Borehole T1 Core Box 2 of 6

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

Fig C-5: Borehole T1 Core Box 3 of 6

Fig C-6: Borehole T1 Core Box 4 of 6

Fig C-7: Borehole T1 Core Box 5 of 6

Fig C-8: Borehole T1 Core Box 6 of 6

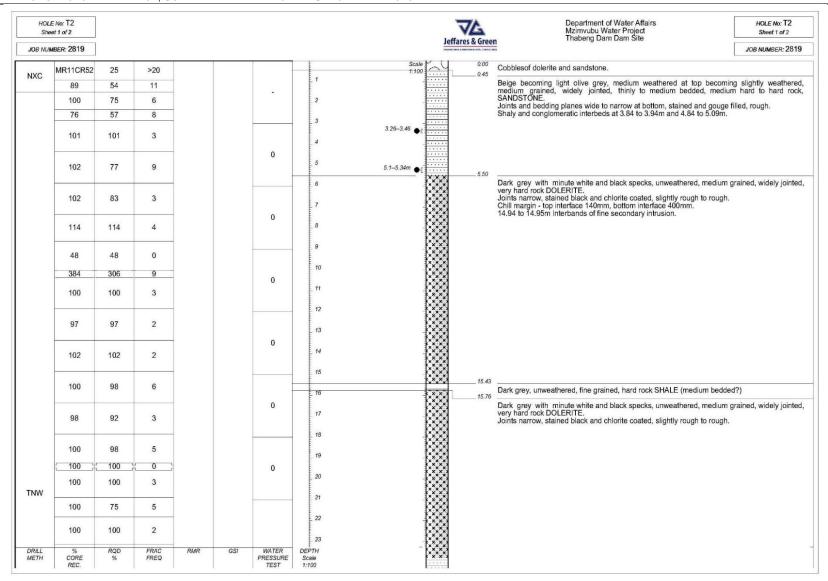


Fig C-9.1: Borehole Logs (T2)

C - 8

DIRECTORATE: OPTIONS ANALYSIS

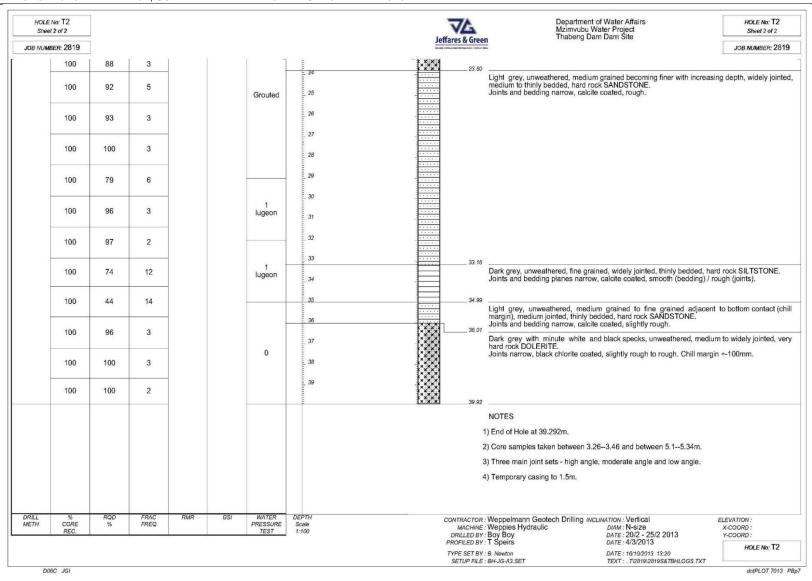


Fig C-9.2: Borehole Logs (T2)

OCTOBER 2014

Tel:012 8047516

Tel:012 8047516

Tel:012 8042079

605 Moreleta Str Silverton Pretoria O184

cell: W Coventry

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu Water Project
DRILLER: Boy Boy

BOREHOLE NR: T 2

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
Double	FROM: 3.00m	10min	25	25	53659.9-53659.9= Olt
		10min	50	50	53660.9-53660.9= Olt
	TO: 6.00m	10min	70	70	53663.6-53663.6= Olt
		10min	50	50	53667.1-53667.1= Olt
		10min	25	25	53670.3-53670.3= Olt
Double	FROM: 6.00m	10min	55	55	53683.5-53683.5= Olt
		10min	95	95	53685.3-53685.3= Olt
	TO: 9.00m	10min	135	135	53690.7-53690.7= Olt
		10min	95	95	53692.3-53692.3= Olt
		10min	55	55	53693.7-56393.7= Olt
	FROM: 9.00m	10min	80	80	53705.7-53705.7= Olt
		10min	140	140	53707.3-53707.3= Olt
Double	TO: 12.00m	10min	200	200	53708.1-53708.1= Olt
		10min	140	140	53710.5-53710.5= Olt
		10min	80	80	53712.3-53712.3= Olt
	FROM: 12.00m	10min	110	110	53723.4-53723.4= Olt
10000	- 4-5	10min	190	190	53725.5-53725.5= Olt
Double	TO: 15.00m	10min	270	270	53727.1-53727.1= 0lt
		10min	190	190	53729.6-53729.6= Olt
		10min	110	110	53730.1-53730.1= Olt
	FROM; 15.00m	10min	135	135	53743.8-53743.8= Olt
		10min	240	240	53748.5-53748.5= Olt
Double	TO: 18.00m	10min	340	340	53767.1-53767.1= Olt
		10min	240	240	53760.6-53760.6= Olt
		10min	135	135	53770.3-53770.3= Olt
Double	FROM: 18.00m	10min	165	165	53784.7-53784.7= Olt
		10min	285	285	53785.7-53785.7= Olt
	TO: 21.00m	10min	405	405	53803.8-53826.4= 22.6lt
		10min	285	285	53832.6-53832.6= Olt
		10min	165	165	53838.0-53838.1= 0.1lt
	FROM: 29.00m	10min	265	265	53848.4-53848.4= Olt
		10min	460	460	53858.6-53906.1= 47.5lt
Double	TO: 32.00m	10min	655	450	53910.5-53964.0= 47.5lt
		10min	460	400	53970.9-54025.5= 54.6lt
		10min	265	265	54030.4-54034.1= 3.7lt
Double	FROM: 32.00m	10min	290	290	54047.8-54051.8= 4lt
		10min	510	500	54101.6-54161.0= 59.4lt
	TO: 35.00m	10min	725	500	54165.8-54232.4= 66.6lt
		10min	510	500	54240.8-54273.4= 32.6lt
		10min	290	290	54276.5-54284.7= 8.2lt
Single	FROM: 35.00m	10min	315	315	54296.5-54302.4= 5.9lt
		10min	555	450	54313.4-54401.7= 88.3lt
	TO: END OF	10min	790	450	54411.9-54499.6= 87.7lt
	BOREHOLE	10min	555	450	54508.1-54592.5= 84.4lt
		10min	315	315	54595.9-54607.1= 11.2lt

REMARKS: Water seepage pass packer out the borehole; 29.00m to 32.00m= 30lt; 32.00m to 35.00m= 30lt

35.00m to end of borehole = 40lt

Grout from 21.00m to 29.00m see drilling journal did not presure test at this depth

Fig C-10 Water Pressure Testing Report (T2)

Fig C-11: Borehole T2 Core Box 1 of 6

Fig C-12: Borehole T2 Core Box 2 of 6

Fig C-13: Borehole T2 Core Box 3 of 6

Fig C-14: Borehole T2 Core Box 4 of 6

Fig C-15: Borehole T2 Core Box 5 of 6

Fig C-16: Borehole T2 Core Box 6 of 6

C2:

SOMABADI DAM SITE

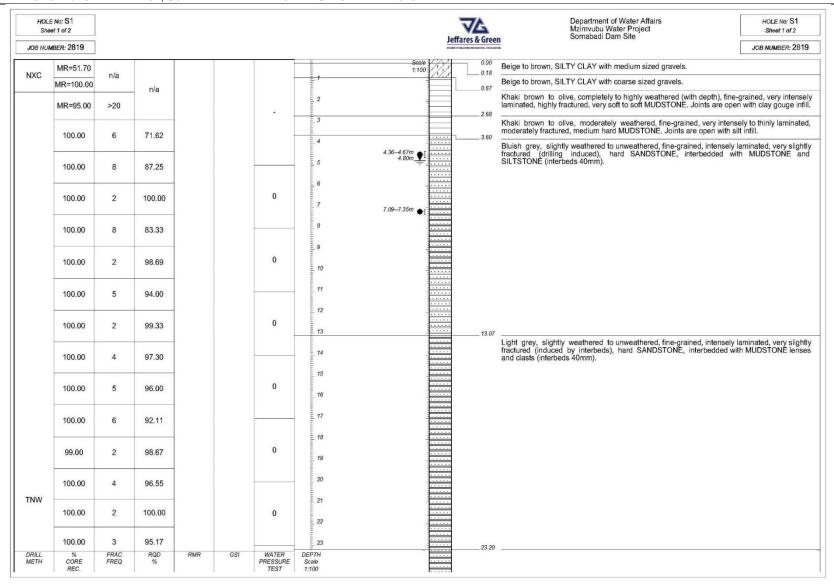


Fig C-17.1: Borehole Logs (S1)

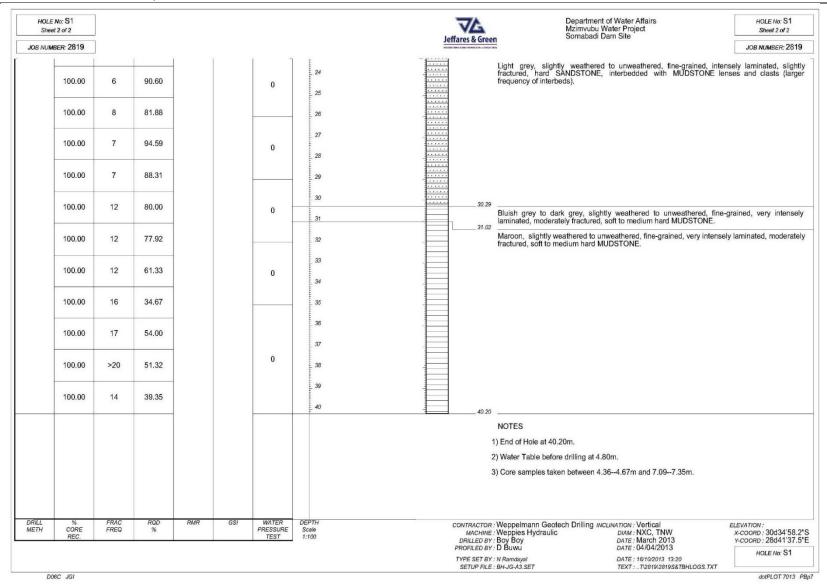


Fig C-17.2: Borehole Logs (S2)

Silverton Pretoria 0184 cell: W Coventry

605 Moreleta Str

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu Water Project DRILLER: Boy Boy

BOREHOLE NR: S 1

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
22/03/2013	FROM: 5.00m	10 min	45 kpa		0
Double		10 min	80		0
	TO: 8.00m	10 min	115		0
		10 min	80		0
		10 min	45		0
	FROM: 8.00m	10 min	70 kpa		0
Double		10 min	130		0
	TO: 11.00m	10 min	180		0
		10 min	130		0
		10 min	70		0
	FROM: 11.00m	10 min	100 kpa		0
Double		10 min	170		0
	TO: 14.00m	10 min	250		0
		10 min	170		0
		10 min	100		0
	FROM: 14.00m	10 min	125 kpa		0
Double		10 min	220		0
	TO: 17.00m	10 min	320		0
	101 11100111	10 min	220		0
	1	10 min	123		0
	FROM: 17.00m	10 min	155 kpa		0
Double	THOW. THOM	10 min	270		0
Boubio	TO: 20.00m	10 min	385		0
	10. 20.0011	10 min	270	- N	0
		10 min	155		0
	FROM: 20.00m	10 min	180 kpa		0
Double	1 100101. 20.00111	10 min	320		0
Dodbie	TO: 23.00m	10 min	450		0
	10. 23.00m	10 min	320		0
	i e	10 min	180		0
	FROM: 23.00m	10 min	210 kpa		0
Davible	FROM: 23.00M	100000000000000000000000000000000000000	365		0
Double	TO: 26 00m	10 min	520		0
	TO: 26.00m	10 min	365		1.0
		10 min			0
	EDOM: 00.00	10 min	210		0
D	FROM: 26.00m	10 min	235 kpa		0
Double	TO 00 00	10 min	410		0
	TO: 29.00m	10 min	590		0
		10 min	410		0
		10 min	235		0
Tax	FROM: 29.00m	10 min	265 kpa		0
Double	TO 00 22	10 min	460		0
	TO: 32.00m	10 min	655		0
		10 min	460		0
		10 min	265		0
23/03/2013	FROM: 32.00m	10 min	290 kpa		0
Double		10 min	510		0
	TO: 35.00m	10 min	725		0
		10 min	510		0
		10 min	290		0
	FROM: 35.00m	10 min	315 kpa		0
Single		10 min	555		0
	TO: 40.20m	10 min	790		0
	END OF HOLE	10 min	555		0
		10 min	315		0

Water Pressure Testing Report (S1) Fig C-18:

Fig C-19: Borehole S1 Core Box 1 of 6

Fig C-20: Borehole S1 Core Box 2 of 6

Fig C-21: Borehole S1 Core Box 3 of 6

Fig C-22: Borehole S1 Core Box 4 of 6

Fig C-23: Borehole S1 Core Box 5 of 6

Fig C-24: Borehole S1 Core Box 6 of 6

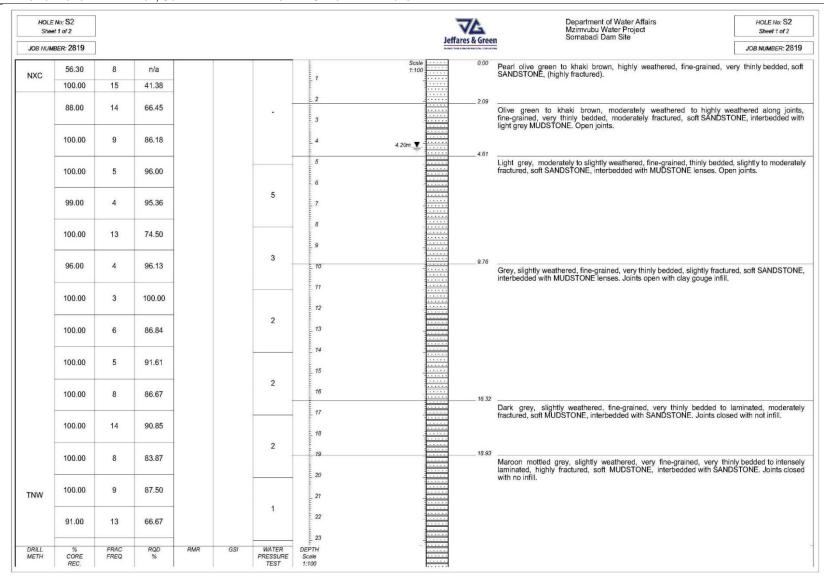


Fig C-25.1: Borehole Logs (S2)

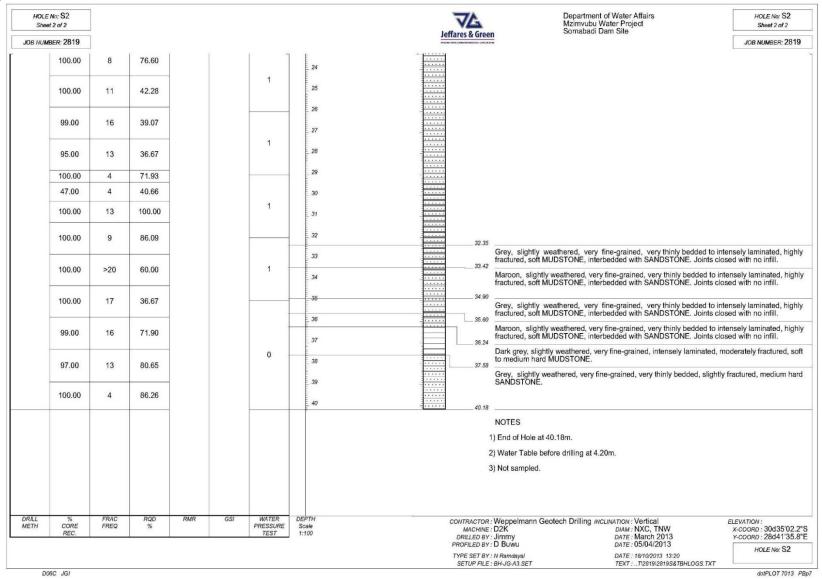
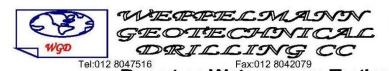



Fig C-25.2: Borehole Logs (S2)

605 Moreleta Str Silverton Pretoria 0184 cell: W Coventry

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu Water Project

BOREHOLE NR: S 2

COTILIVIE.	MIZITIVUDU	V V CAL
DRILLER:	Jimmy	

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE
	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
25/03/2013	FROM: 5.00m	10 min	45 kpa	4	0
Double	E SUCCEASTINAL CANOGRAMOSION	10 min	80		0
	TO: 8.00m	10 min	115		0
	10. 0.0011	10 min	80		0
		10 min	45		0
	FROM: 8.00m	10 min	70 kpa	+	0
Double	TROWN. O.OOM	10 min	130		0
Joubio	TO: 11.00m	10 min	180	+	0
	10. 11.00111	10 min	130		0
	-	10 min	70	•	0
	FROM: 11.00m	10 min	100 kpa		0
Davida La	FROM: 11.00M				0
Double	TO: 11.00	10 min	170 250	1	1,000
	TO: 14.00m	10 min			0
		10 min	170		0
		10 min	100		0
	FROM: 14.00m	10 min	125 kpa		0
Double		10 min	220		0
	TO: 17.00m	10 min	320		0
		10 min	220		0
		10 min	125		0
	FROM: 17.00m	10 min	155 kpa		0
Double		10 min	270		0
	TO: 20.00m	10 min	385		0
		10 min	270		0
		10 min	155		0
	FROM: 20.00m	10 min	180 kpa	1	0
Double		10 min	320		0
	TO: 23.00m	10 min	450		0
		10 min	320		0
		10 min	180		0
	FROM: 23.00m	10 min	210 kpa	1	0
Double		10 min	365	1	0
Joubio	TO: 26.00m	10 min	520		0
	10. 20.00111	10 min	365		0
		10 min	210		0
	FROM: 26.00m	10 min	235 kpa	+	0
Double	FROM: 26.00M	10 min	235 Kpa 410		0
Jouble	TO: 20 00:		590		
	TO: 29.00m	10 min 10 min	5007(0.0000)		0
		100000000000000000000000000000000000000	410 235		0
		10 min			0
	FROM: 29.00m	10 min	265 kpa		0
Double	TO 00 00	10 min	460		0
	TO: 32.00m	10 min	655		0
		10 min	460		0
		10 min	265		0
26/03/2013	FROM: 32.00m	10 min	290 kpa	290 kpa	88
Double		10 min	510	290	84.2
	TO: 35.00m	10 min	775	290	107.3
		10 min	510	290	80.5
		10 min	290	290	70.1
	FROM: 35.00m	10 min	315 kpa	200 kpa	104.8
Single		10 min	555	200	123.8
	TO: 40.18m	10 min	790	200	158.5
	END OF HOLE	10 min	555	200	115
		10 min	315	200	112
			010	_00	1.1

Fig C-26: **Water Pressure Testing Report (S2)**

Fig C-27: Borehole S2 Core Box 1 of 6

Fig C-28: Borehole S2 Core Box 2 of 6

Fig C-29: Borehole S2 Core Box 3 of 6

Fig C-30: Borehole S2 Core Box 4 of 6

Fig C-31: Borehole S2 Core Box 5 of 6

Fig C-32: Borehole S2 Core Box 6 of 6

C3:

NTABELANGA DAM SITE

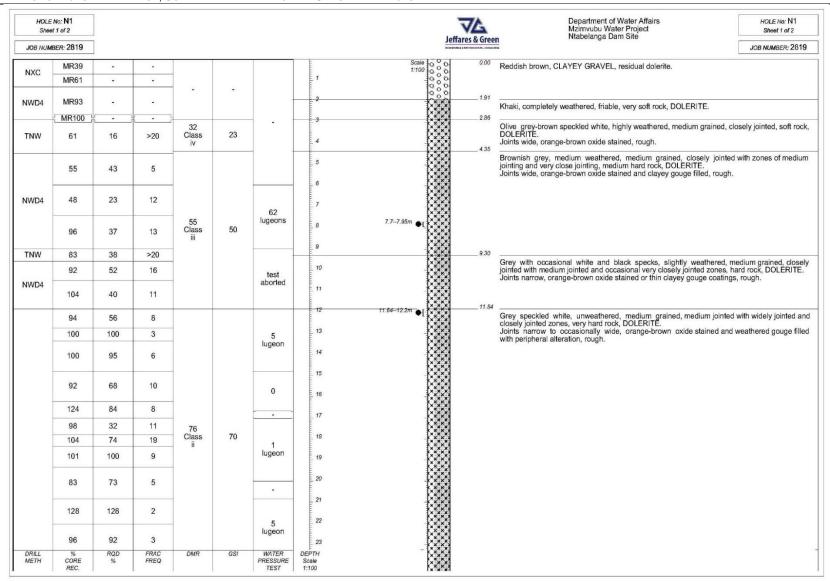


Fig C-33.1: Borehole Logs (N1)

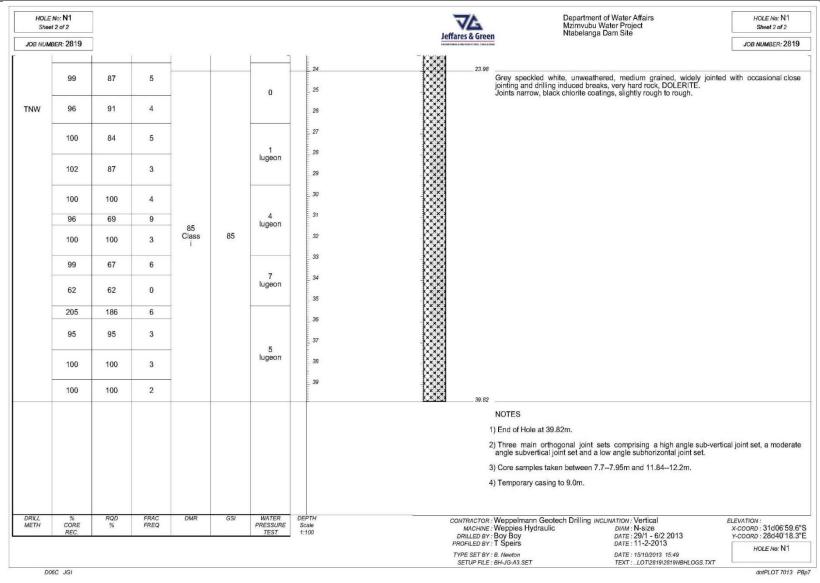


Fig C-33.2: Borehole Logs (N1)

DIRECTORATE: OPTIONS ANALYSIS

WEPPELMANN GEOTECHINICAL DRILLING CC

605 Moreleta Str Silverton Pretoria O184 cell: W Coventry

047516 Fax:012 8042079 cell: W Coven
Report on Waterpresure Testing :0828091797

Froject BOREHOLE NR: N 1

SCHEME: Mzimvubu Water Project

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
	FROM: 5.96m	10min	45	45	47063.2-47080.8= 17.6
Single		10min	80	50	47189.1-47300.5= 111.4
	TO: 8.98m	10min	115	50	47321.3-47394.3=73 lt
		10min	80	80	47405.6-47472.1= 66.5
		10min	45	45	47467.3-47558.5= 84.9
	FROM: 8.98m	10min	80	80	
		10min	140	140	Packer could not seat
Single	TO: 11.84m	10min	200	200	in hole water seaping
		10min	140	140	out of borehole
		10min	80	80	
	FROM: 11.84m	10min	110	110	47908.6-47917.6= 9 lt
		10min	190	190	47929.7-47955.4= 25.7
Single	TO: 14.79m	10min	270	270	47957.5-48011.2= 53.7
		10min	190	190	48017.2-48049.7= 32.5
		10min	110	110	48050.8-48064.6= 13.8
	FROM:14.79m	10min	135	135	48070.6-48070.6= 0lt
		10min	240	240	48077.6-48078.6= 10lt
Single	TO: 16.71m	10min	340	340	48085.3-48089.3= 4lt
		10min	240	240	48091.2-48091.2= 0lt
		10min	135	135	480971.1-48097.1= 0lt
	FROM; 17.00m	10min	155	155	48105.6-48126.6= 21 lt
		10min	270	270	48135.3-48238.6= 103
Single	TO: 20.00m	10min	385	300	48248.9-48335.1=86.2
		10min	270	270	48339.6-48339.9= 0.31
		10min	155	155	48342.1-48348.8= 6.7lt
	FROM: 20.84m	10min	190	190	48349.5-48349.6= 0.1lt
	21.00m	10min	330	330	48357.5-48363.9= 6.4lt
Double	TO: 23.59m	10min	475	400	48369.5-48446.0= 76.5lt
	23.50m	10min	330	330	48454.5-48537.7= 83.21
		10min	190	190	48522.2-48547.4= 25.2lt
	FROM: 23.59m	10min	215	215	48556.5-48556.8= 0.3lt
	23.50m	10min	370	370	48561.2-48561.2= Olt
Single	TO: 26.48m	10min	530	530	48567.4-48568.4= 1lt
	26.50m	10min	370	370	48575.6-48575.6= Olt
		10min	215	215	48579.7-48579.7= Olt
	FROM: 26.48m	10min	240	240	48582.3-48582.3= Olt
	26.50m	10min	420	420	48588.2-48596.1= 7.9lt
Double	TO:29.45m	10min	600	450	48606.0-48659.1= 53.1lt
		10min	420	420	48663.6-48712.6= 49lt
		10min	240	240	48716.1-48716.2= 0.1lt
	FROM: 29.45m	10min	270	270	48718.6-48719.0= 0.4lt
	29.50m	10min	470	400	48728.3-48786.9= 58.6lt
Double	TO: 32.81m	10min	665	400	48792.1-48863.2= 71.1lt
		10min	470	370	48874.3-48961.2= 89.9lt
		10min	270	270	48965.0-48965.0= Olt
	FROM: 32.81m	10min	295	295	48987.4-48992.9= 5.51
Double	32.50m	10min	515	350	48998.2-49068.1= 69.9
	TO: 35.23mm	10min	735	350	49074.1-49134.8= 60.7
		10min	515	350	49144.4-49218.3= 73.9
		10min	295	295	49222.4-49222.5= Olt
	FROM: 35.23m	10min	320	320	49256.1-49325.9= 69.8
	35.50m	10min	560	350	49333.5-49403.1= 69.6
Single	TO: END OF	10min	800	350	49409.1-49483.6= 74.5
	BOREHOLE	10min	560	350	49487.6-49577.8= 90.2
		10min	320	320	49581.9-49659.3= 77.4

Fig C-34: Water Pressure Testing Report (N1)

Fig C-35: Borehole N1 Core Box 1 of 6

Fig C-36: Borehole N1 Core Box 2 of 6

Fig C-37: Borehole N1 Core Box 3 of 6

Fig C-38: Borehole N1 Core Box 4 of 6

Fig C-39: Borehole N1 Core Box 5 of 6

Fig C-40: Borehole N1 Core Box 6 of 6

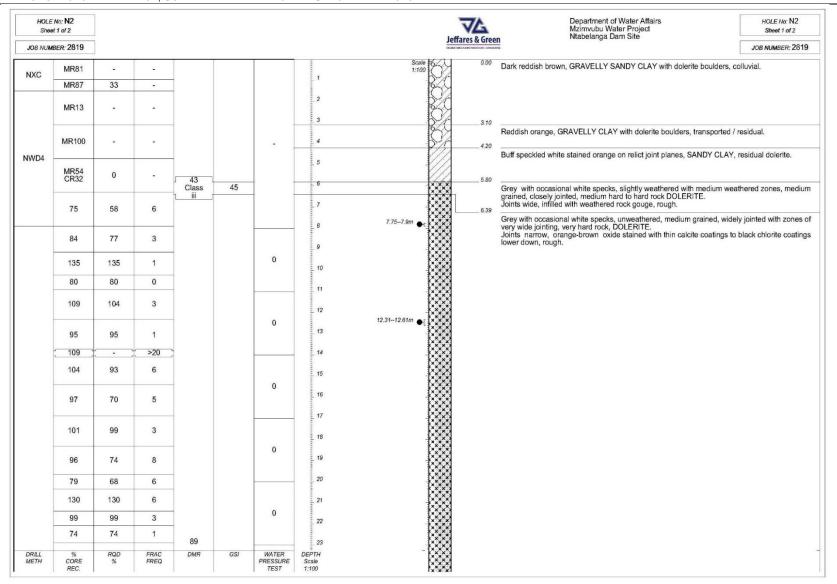


Fig C-41.1: Borehole Logs (N2)

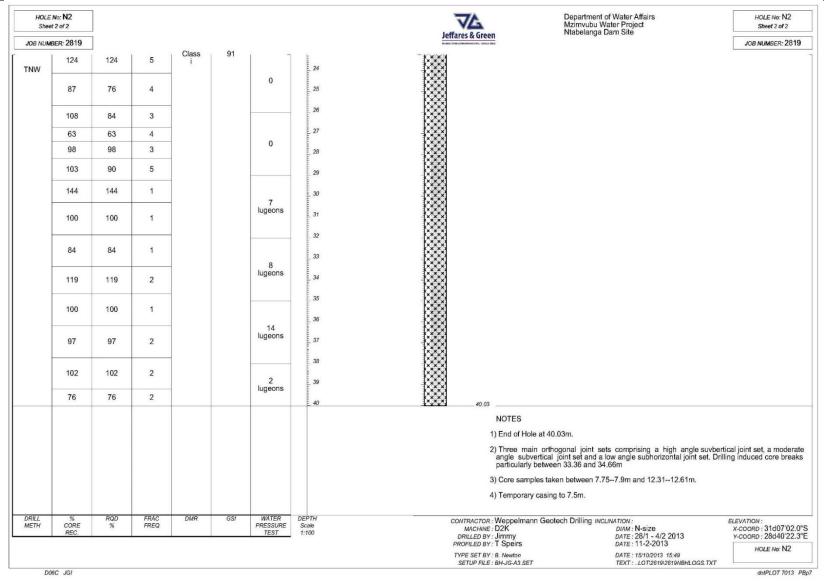


Fig C-41.2: Borehole Logs (N2)

DIRECTORATE: OPTIONS ANALYSIS

605 Moreleta Str Silverton Pretoria O184 cell: W Coventry

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu Water Project

DRILLER: Shane

BOREHOLE NR: N 2

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
11/02/2013	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
Double	FROM: 8.00m	10min	70		50386.2-50386.2= 0lt
		10min	130		50391.9-50392.1= 0.2lt
	TO: 11.00m	10min	190		50395.7-50396.8= 1.1lt
		10min	130		50391.5-50398.8= 7.3lt
		10min	70		50399.9-50400.7= 0.8It
	FROM: 11.00m	10min	100		50415.6-50415.6= 0lt
Double		10min	170		50417.1-50417.1= 0lt
	TO: 14.00m	10min	250		50418.8-50423.8= 50lt
		10min	170		50424.9-50424.9= 0lt
		10min	100		50425.6-50525.6= 0lt
	FROM: 14.00m	10min	125		50438.8-50439.0= 2 It
		10min	220		50439.4-50439.4= 0lt
Double	TO: 17.00m	10min	320		50440.1-50443.2= 3.1lt
		10min	220		50444.6-50444.6= 0lt
	1	10min	125		50448.4-50448.4= 0lt
	FROM: 17.00m	10min	155		50462.0-50462.0= 0lt
		10min	270		50462.8-50462.8= Olt
Double	TO: 20.00m	10min	385		50464.5-50464.5= 0lt
		10min	270		50466.0-50466.0= Olt
	34 15	10min	155		50468.2-50468.2= 0lt
	FROM: 20.00m	10min	200		50412.0-50412.0= 0lt
		10min	350		50480.8-50481.6= 0.8It
Double	TO: 23.00m	10min	500		50483.4-50504.1= 20.7lt
		10min	350		50525.5-50525.5= 0lt
		10min	200		50526.4-50526.4= 0lt
2/02/2013	FROM: 23.00m	10min	290		50536.3-50536.3= Olt
		10min	365		50538.1-50538.2= 0.1lt
Double	TO: 26.00m	10min	520		50546.3-50765.2= 218.9lt
		10min	365		50707.7-50707.7= Olt
		10min	290		50709.3-50709.3= 0lt
	FROM: 26.00m	10min	235		50719.4-50719.4= 0lt
		10min	470		50722.5-50722.5= 0lt
Double	TO: 29.00m	10min	590		50732.7-50872.9= 140.2lt
		10min	470		50876.2-50876.2= 0lt
		10min	235		50877.7-50877.7= 0lt
	FROM: 29.00m	10min	265		50886.1-50886.1= 0lt
		10min	460	A CONTROL OF THE PARTY OF THE P	50890.4-50921.5= 31.1lt
Double	TO: 32.00m	10min	655	550kpa	50939.4-51184.0= 244.6lt
		10min	460		51188.6-51287.9= 99.3lt
		10min	265		51290.9-51290.9= 0lt
	FROM: 32.00m	10min	290		51297.9-51297.9= Olt
		10min	510		51303.1-51385.9= 82.8lt
Double	TO: 35.00m	10min	725	700kpa	51399.4-51704.7= 305.3lt
		10min	510		51718.7-51843.6= 124.9lt
		10min	290		51847.1-51847.1= Olt
	FROM: 35.00m	10min	315		51862.9-51862.9= 0lt
		10min	555	200000000000000000000000000000000000000	51885.4-52088.8= 203.4lt
Double	TO: 38.00m	10min	790	660kpa	52117.9-52394.7= 276.8lt
		10min	555		52418.5-52644.6= 226.1lt
		10min	315		52651.9-52651.9= 0lt
	FROM: 38.00m	10min	345		52676.3-52676.3= Olt
		10min	600		52682.9-52872.3= 189.4lt
Single	TO: END OF	10min	860	600kpa	52887.7-53088.8= 201.1lt
	BOREHOLE		600		53102.1-53354.4= 252.3lt
	-	10min	345		53359.1-53359.1= 0lt

Fig C-42: Water Pressure Testing Report (N2)

Fig C-43: Borehole N2 Core Box 1 of 6

Fig C-44: Borehole N2 Core Box 2 of 6

Fig C-45: Borehole N2 Core Box 3 of 6

Fig C-46: Borehole N2 Core Box 4 of 6

Fig C-47: Borehole N2 Core Box 5 of 6

Fig C-46: Borehole N2 Core Box 6 of 6

APPENDIX D

PHASE 2 SITE PLANS

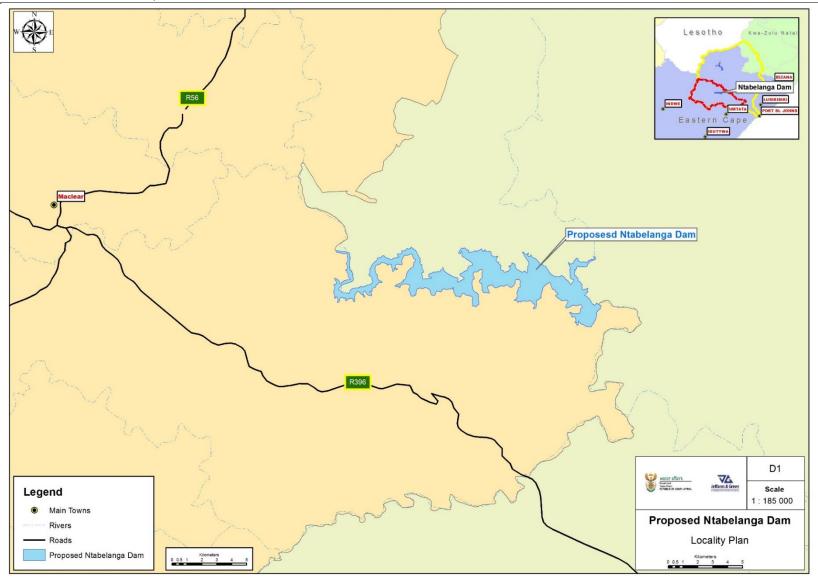


Fig D-1: **Ntabelanga Locality Plan**

D - 2

DIRECTORATE: OPTIONS ANALYSIS

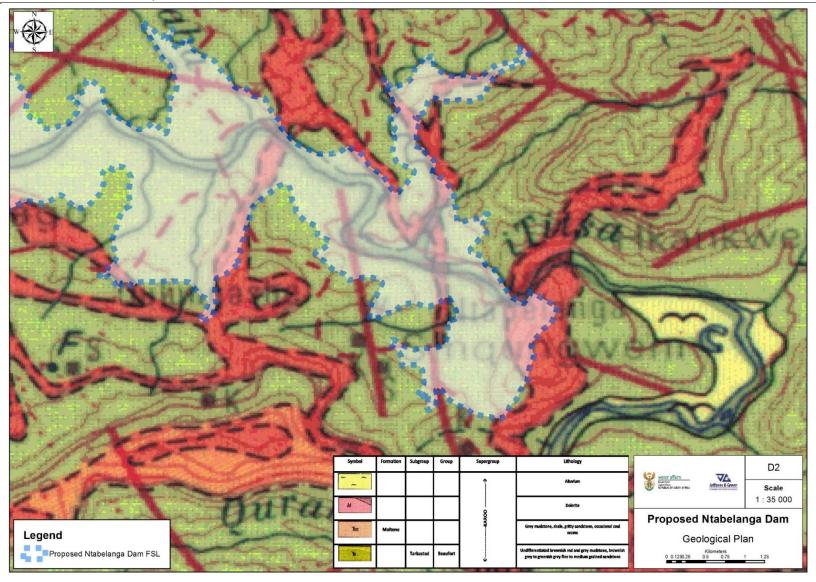


Fig D-2: Ntabelanga Geological Plan

D - 3

DIRECTORATE: OPTIONS ANALYSIS OCTOBER 2014

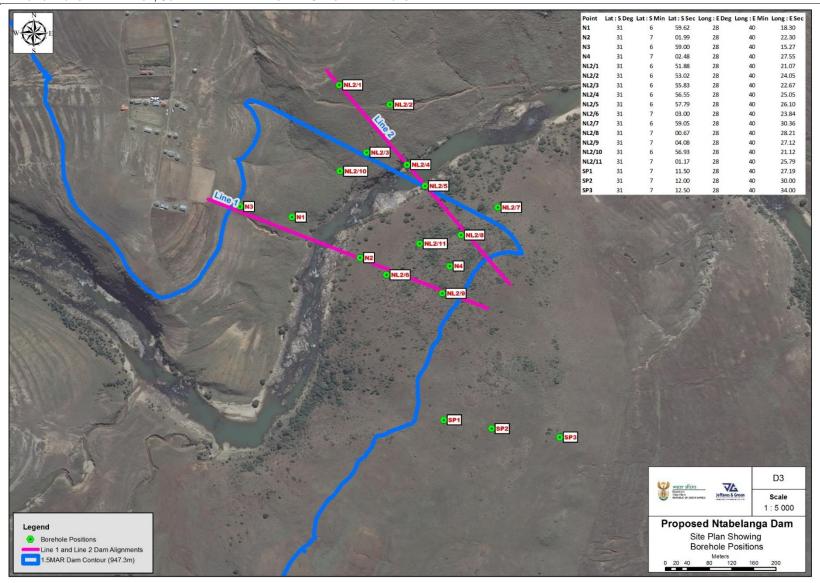


Fig D-3: **Site Plan Showing Borehole Positions**

D - 4

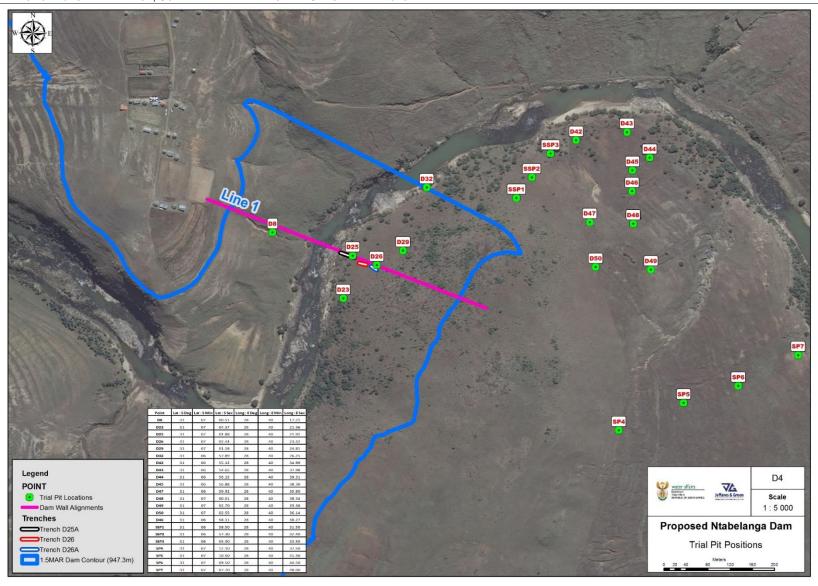


Fig D-4: Site Plan Showing Trial Pit Positions

D - 5

DIRECTORATE: OPTIONS ANALYSIS OC

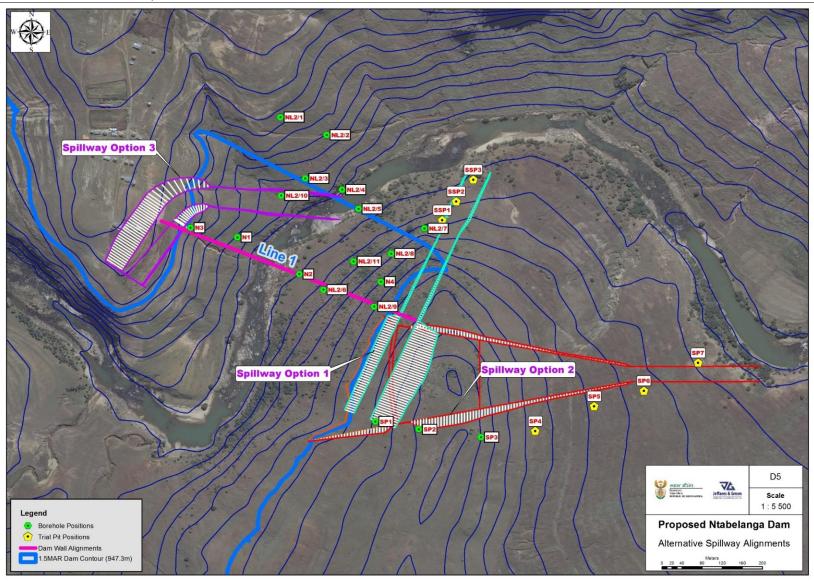
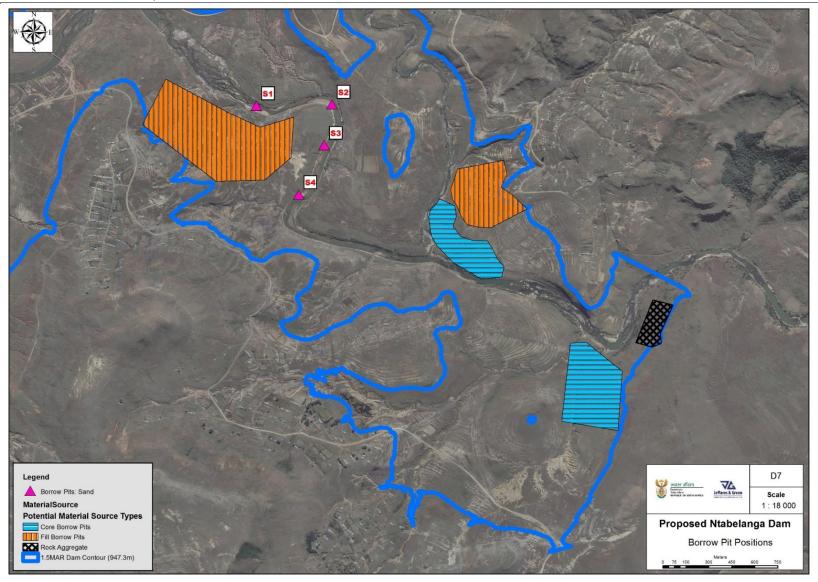


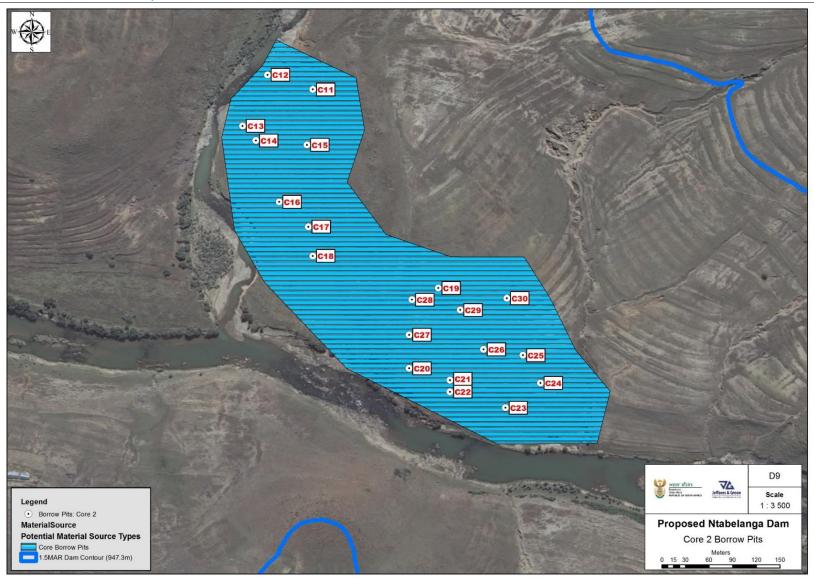
Fig D-5: Site Plan Showing Alternative Spillway Alignments

D - 6

Fig D-6: Plan of Saddle Dam Showing Trial Pit Positions

D - 7




Fig D-7: Plan Showing Borrow Pit Locations

OCTOBER 2014

Fig D-8: Core Borrow Pit 1 Site Plan

OCTOBER 2014

Core Borrow Pit 2 Site Plan Fig D-9:

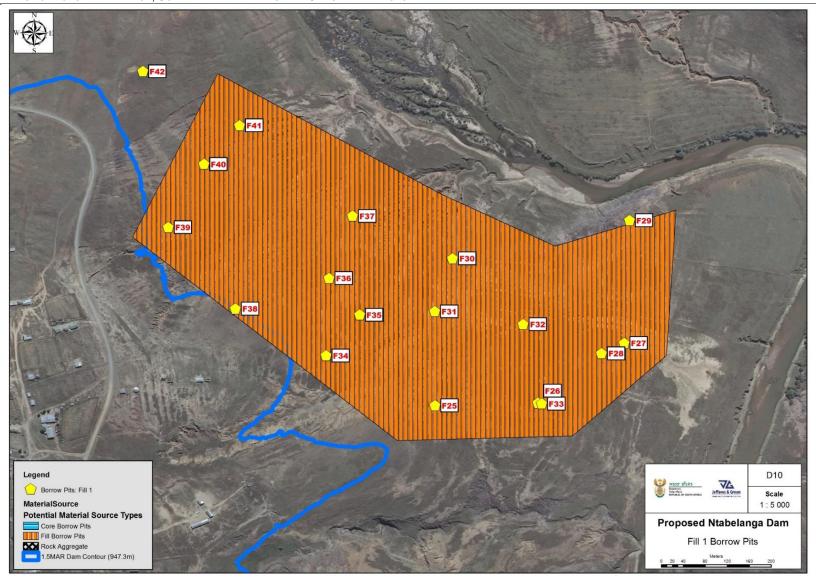


Fig D-10: Fill Borrow Pit 1 Site Plan

D - 11

DIRECTORATE: OPTIONS ANALYSIS OCTOBER 2014

Fill Borrow Pit 2 Site Plan Fig D-11:

APPENDIX E

PHASE 2 BOREHOLE LOGS

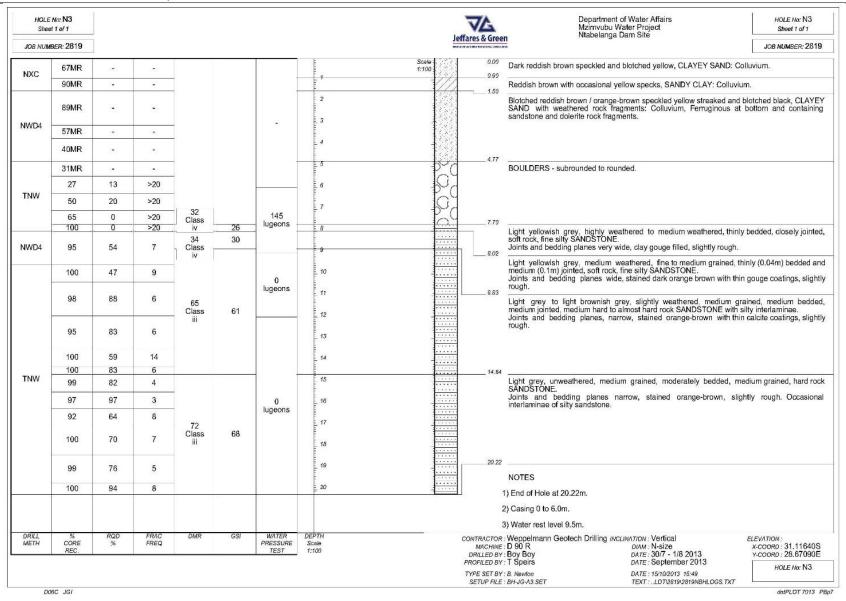


Fig E-1: Borehole Logs (N3)

605 Moreleta Str Silverton Pretoria O184

cell: W Coventry

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu river N 3

BOREHOLE NR: N 3

DRILLER: Boy Boy

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
06/08/2013	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
	From: 6.00m	10 min	55kpa	55kpa	405L
		10 min	95	95	462L
DP	TO 9.00m	10 min	135	135	615L
		10 min	95	95	334L
		10 min	55kpa	55kpa	240L
	FROM 9.00m	10 min	80kpa	80kpa	0
		10 min	140	140	0
DP	TO 12.00m	10 min	200	200	0
		10 min	140	140	0
		10 min	80kpa	80kpa	0
09/08/2013	FROM 12.00m	10 min	110kpa	110kpa	0
		10 min	190	190	0
SP	TO End of BH	10 min	270	270	0
â		10 min	190	190	0
		10 min	110kpa	110kpa	0

Fig E-2: **Water Pressure Testing Report (N3)**

Fig E-3: Borehole N3 Core Box 1 of 3

Fig E-4: Borehole N3 Core Box 2 of 3

Fig E-5: Borehole N3 Core Box 3 of 3

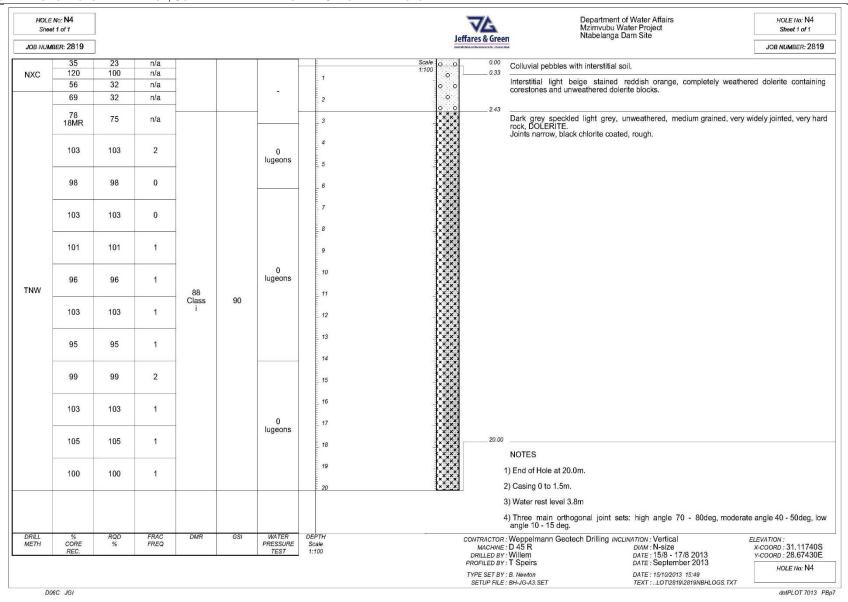


Fig E-6: Borehole Logs (N4)

605 Moreleta Str Silverton Pretoria 0184

cell: W Coventry

0

Report on Waterpresure Testing:0828091797 **BOREHOLE NR: N 4**

SCHEME: Mzimvubu river N 4

DRILLER: Willem

STAGES TESTING GAUGE **PRESURES** WATER INTAKE DATE & Packer Description TIME BY HOLE **METERS** REQUIRED REQUIRED ACTUAL TOTAL LITRES 19/08/2013 **MINUTES PRESSURES PRESSURES** 10 min 25kpa 25kpa 0 From: 3.00m 10 min 50 50 0 DP TO 6.00m 10 min 70 70 0 10 min 50 50 0 25kpa 25kpa 0 10 min FROM 8.00m 10 min 70kpa 70kpa 0 10 min 130 130 0 DP TO 14.00m 10 min 180 180 1 L 130 130 10 min 0 10 min 70kpa 70kpa 0 FROM 14.00m 10 min 125kpa 0 125kpa 220 220 0 10 min SP TO End of BH 10 min 320 320 6 L 10 min 220 220 0

10 min

125kpa

125kpa

REMARKS:

Fig E-7: **Water Pressure Testing Report (N4)**

Fig E-8: Borehole N4 Core Box 1 of 3

Fig E-9: Borehole N4 Core Box 2 of 3

Fig E-10: Borehole N4 Core Box 3 of 3

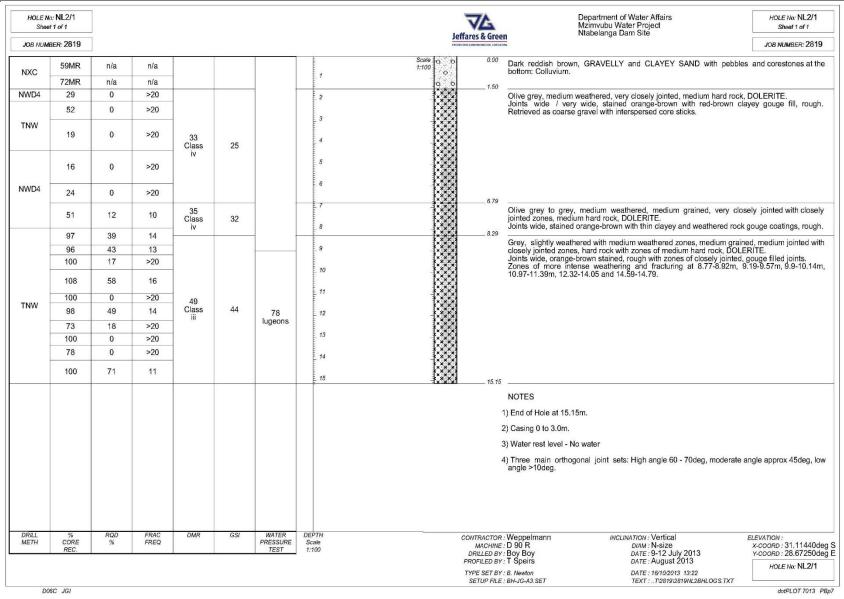


Fig E-11: Borehole Logs (NL2/1)

Silverton Pretoria O184 cell: W Coventry

605 Moreleta Str

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu river DRILLER: Boy Boy

REMARKS:

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
14-Jul	WARRANCE TO BREATA	the same teachers are a superior and the same same same same same same same sam	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
(From: 9.00m	10	140kpa	140kpa	46.9L
		10	180kpa	180kpa	65.2L
	TO	10	200kpa	200kpa	1103L
	15.15m	10	180kpa	180kpa	990L
		10	140kpa	140kpa	668L

Fig E-12: Water Pressure Testing Report (NL 2/1)

Fig E-13: Borehole NL 2/1 Core Box 1 of 2

Fig E-14: Borehole NL 2/1 Core Box 2 of 2

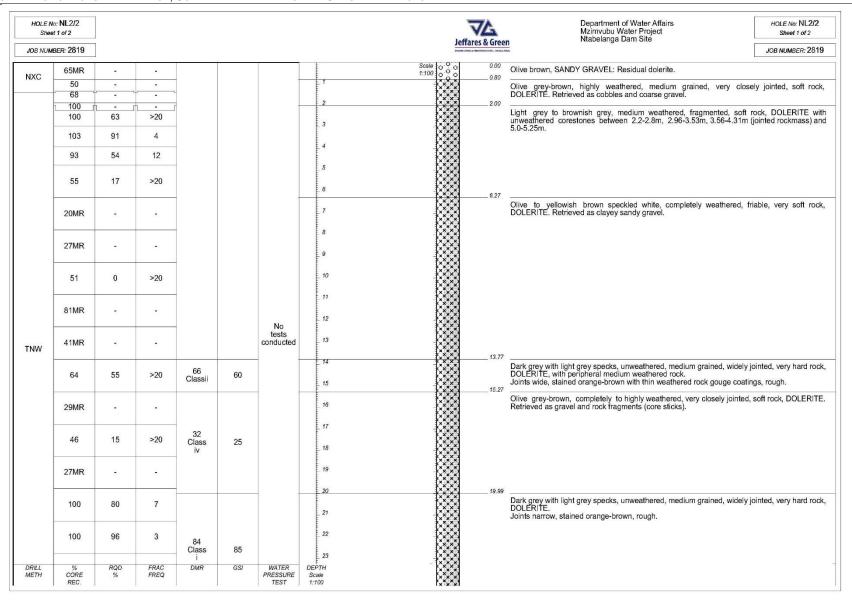


Fig E-15-1: Borehole Logs (NL 2/2)

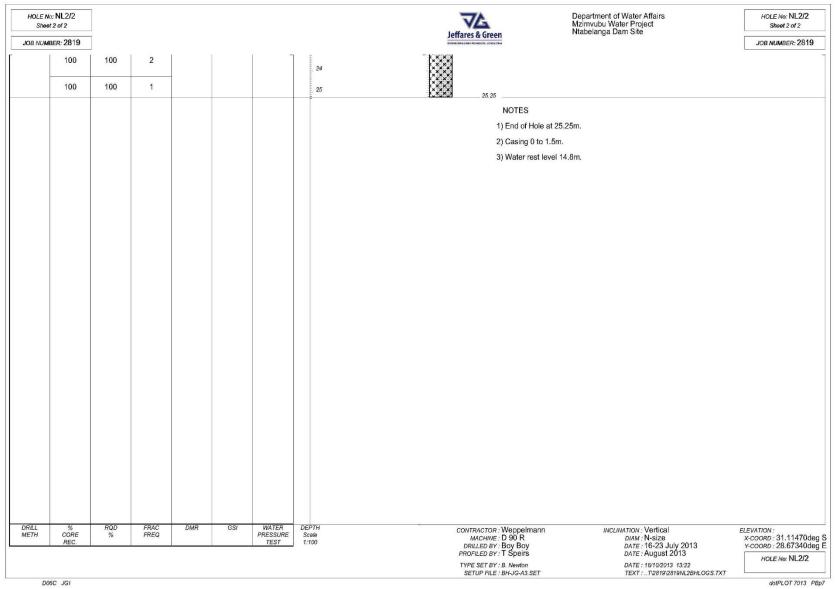


Fig E-15-2: Borehole Logs (NL 2/2)



Fig E-16: Borehole NL 2/2 Core Box 1 of 3

Fig E-17: Borehole NL 2/2 Core Box 2 of 3



Fig E-18: Borehole NL 2/2 Core Box 3 of 3

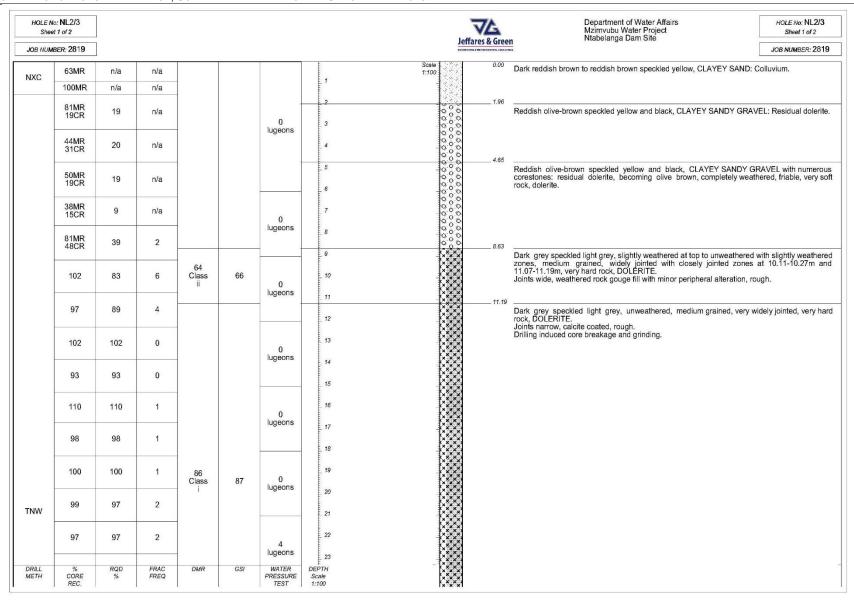


Fig E-19-1: Borehole Logs (NL 2/3)

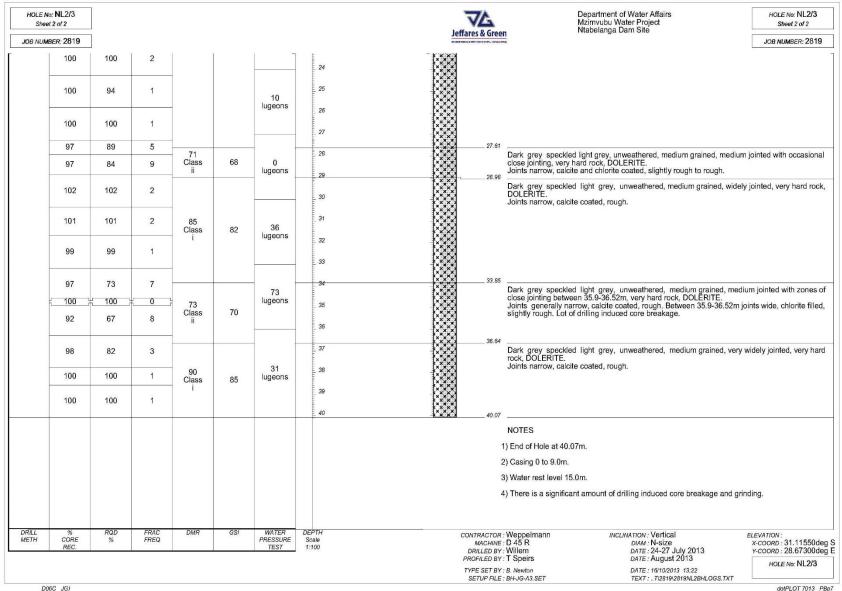


Fig E-19-2: Borehole Logs (NL 2/3)

605 Moreleta Str Silverton Pretoria O184 cell: W Coventry

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu river DRILLER: Boyboy

BOREHOLE NR: NL 2/3

DATE &	STAGES	TESTING	GAUGE	PRESURES	WATER INTAKE
Packer Description		TIME			BY HOLE
	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
	FROM 6.00m	10	45kpa	45kpa	190L
29/07/2013		10	80kpa	80kpa	9L
	TO 9.00m	10	115kpa	115kpa	261L
DP		10	80kpa	80kpa	90L
		10	115kpa	115kpa	0
	FROM 9.00m	10	70kpa	70kpa	0
		10	130kpa	130kpa	1L
DP	TO 12.00m	10	180kpa	180kpa	0
		10	130kpa	130kpa	0
		10	70kpa	70kpa	0
	FROM 12.00m	10	100kpa	100kpa	0
Market Co.		10	170kpa	170kpa	0
DP	TO 15.00m	10	250kpa	250kpa	0
		10	170kpa	170kpa	0
	EDOM 45.00	10	100kpa	100kpa	0
	FROM 15.00m	10	125kpa	125kpa	0
DD	TO 40.00	10	220kpa	220kpa	480L
DP	TO 18.00m	10	320kpa	320kpa	107L
		10 10	220kpa	220kpa	0
	FROM 18.00m		125kpa	125kpa	0
	FROM 18.00m	10 10	155kpa 270kpa	155kpa 270kpa	0
DP	TO 21.00m	10		270kpa 358kpa	0
DF	10 21.00111	10	358kpa 270kpa	270kpa	0
		10	155kpa	155kpa	0
	FROM 21.00m	10	180kpa	180kpa	0
	FROW 21.00III	10	320kpa	320kpa	684L
DP	TO 24.00M	10	450kpa	450kpa	1115L
D1	10 24.00W	10	320kpa	320kpa	430L
		10	180kpa	180kpa	20L
	FROM 24.00m	10	210kpa	210kpa	29L
	1110101 21.00111	10	365kpa	365kpa	0
DP	TO 27.00m	10	520kpa	520kpa	715L
	10 27.0011	10	365kpa	365kpa	360L
		10	210kpa	210kpa	61L
	FROM 27.00m	10	235kpa	235kpa	2L
		10	410kpa	410kpa	542L
DP	TO 30.00m	10	590kpa	590kpa	721L
104 pts		10	410kpa	410kpa	458L
		10	235kpa	235kpa	0
	FROM 30.00m	10	265kpa	265kpa	250L
		10	460kpa	460kpa	962L
DP	TO 33,00m	10	655kpa	590kpa	731L
		10	460kpa	460kpa	567L
		10	265kpa	265kpa	289L
29/07/2013	FROM 33.00m	10	300kpa	300kpa	692L
		10	520	510	1162L
	TO 36.00m	10	745	510	1121L
DP		10	520	510	1062L
		10	300kpa	300kpa	766L
	FROM 36.00m	10	325kpa	325kpa	32L
		10	570	570	241L
SP	TO End of hole	10	815	600	723L
		10	570	570	711L
		10	325kpa	325kpa	59L

Fig E-20: Water Pressure Testing Report (NL 2/3)

Fig E-21: Borehole NL 2/3 Core Box 1 of 6

Fig E-22: Borehole NL 2/3 Core Box 2 of 6

Fig E-23: Borehole NL 2/3 Core Box 3 of 6

Fig E-24: Borehole NL 2/3 Core Box 4 of 6

Fig E-25: Borehole NL 2/3 Core Box 5 of 6

Fig E-26: Borehole NL 2/3 Core Box 6 of 6

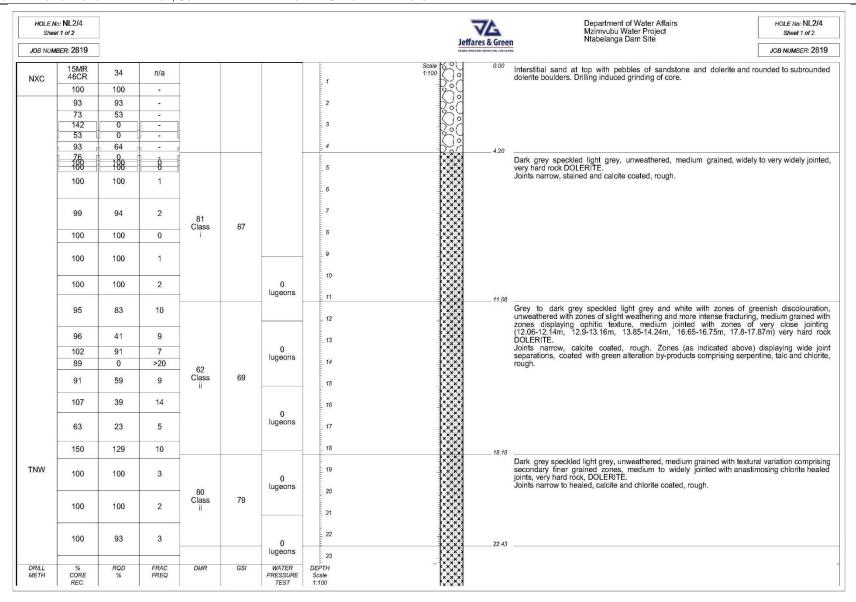


Fig E-27-1: Borehole Logs (NL 2/4)

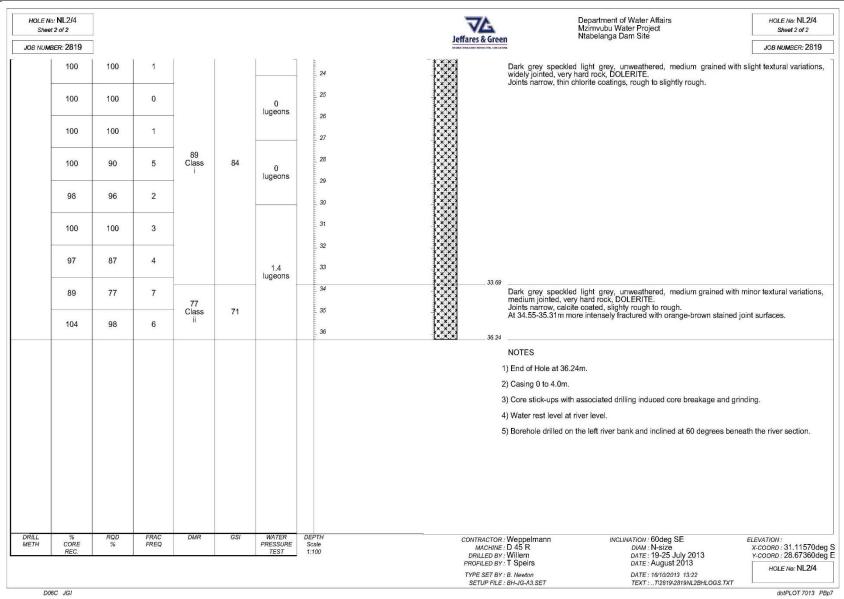


Fig E-27-2: Borehole Logs (NL 2/4)

605 Moreleta Str Silverton Pretoria O184

Report on Waterpresure Testing :0828091797

SCHEME: Mzimvubu river

BOREHOLE NR: NL 2/4

DRILLE	R: ۱	Will	em

DATE &	STAGES	TESTING	GAUGE	PRESURES	WATER INTAKE
Packer Description	METERO	TIME	DEGLUDED	ACTUAL	BY HOLE
	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
	FROM 9.00m	10	45kpa	45kpa	0L
26/07/2013		10	65	65	0L
	TO 12.00m	10	90	90	0L
DP	E.	10	65	65	0L
		10	35kpa	35kpa	0L
3	FROM 12.00m	10	45kpa	45kpa	0L
		10	80	80	0L
DP	TO 15.00m	10	115	115	0L
		10	80	80	0L
		10	45kpa	45kpa	0L
	FROM 15.00m	10	55kpa	55kpa	0L
		10	95	95	0L
DP	TO 18.00m	10	135	135	0L
		10	95	95	0L
	±	10	55kpa	55kpa	0L
	FROM 18.00m	10	70kpa	70kpa	0L
		10	130	130	0L
DP	TO 21.00m	10	180	180	0L
		10	130	130	0L
		10	70kpa	70kpa	0L
	FROM 21.00m	10	145kpa	145kpa	0L
		10	255	255	0L
DP	TO 24.00m	10	360	360	0L
		10	255	255	0L
		10	145kpa	145kpa	0L
	FROM 24.00m	10	165kpa	165kpa	0L
21-Jul		10	285	285	0L
DP	TO 27.00M	10	405	405	0L
		10	285	285	0L
		10	165kpa	165kpa	0L
	FROM 27.00m	10	190kpa	190kpa	0L
		10	330	330	0L
DP	TO 30.00m	10	475	475	10L
		10	330	330	0L
		10	190kpa	190kpa	0L
SP	FROM 30.00m	10	215kpa	215kpa	0L
		10	365	365	33L
	TO End of hole	10	520	520	136L
		10	365	365	0L
		10	215kpa	215kpa	0L
REMARKS:		v - 100000	100 A	Alberta Manager	-0'-"

Fig E-28: Water Pressure Testing Report (NL 2/4)

Fig E-29: Borehole NL 2/4 Core Box 1 of 6

Fig E-30: Borehole NL 2/4 Core Box 2 of 6

Fig E-31: Borehole NL 2/4 Core Box 3 of 6

Fig E-32: Borehole NL 2/4 Core Box 4 of 6

Fig E-33: Borehole NL 2/4 Core Box 5 of 6

Fig E-34: Borehole NL 2/4 Core Box 6 of 6

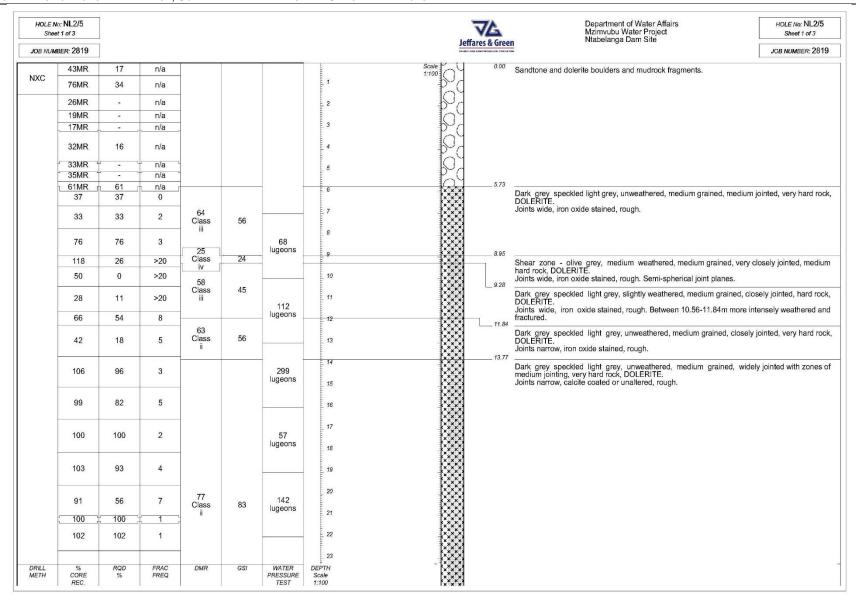


Fig E-35-1: Borehole Logs (NL 2/5)

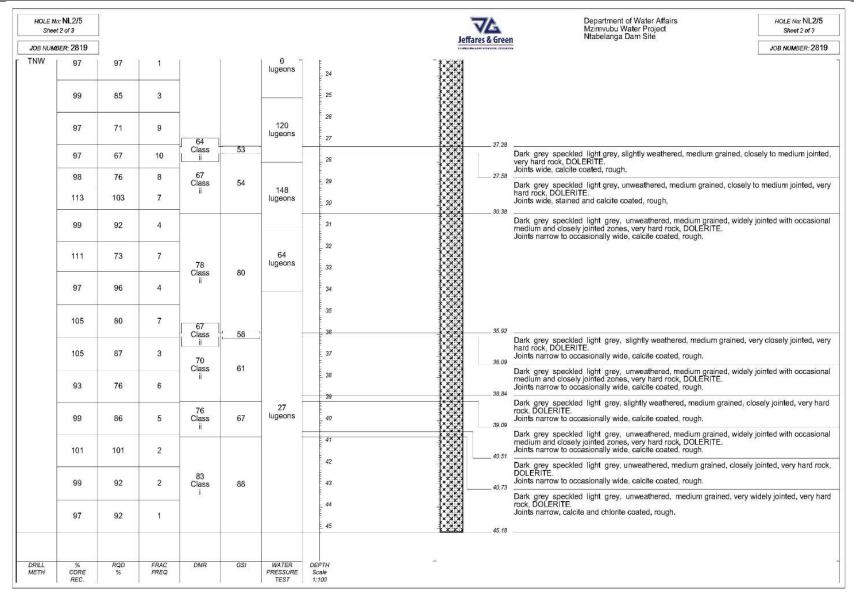


Fig E-35-2: Borehole Logs (NL 2/5)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

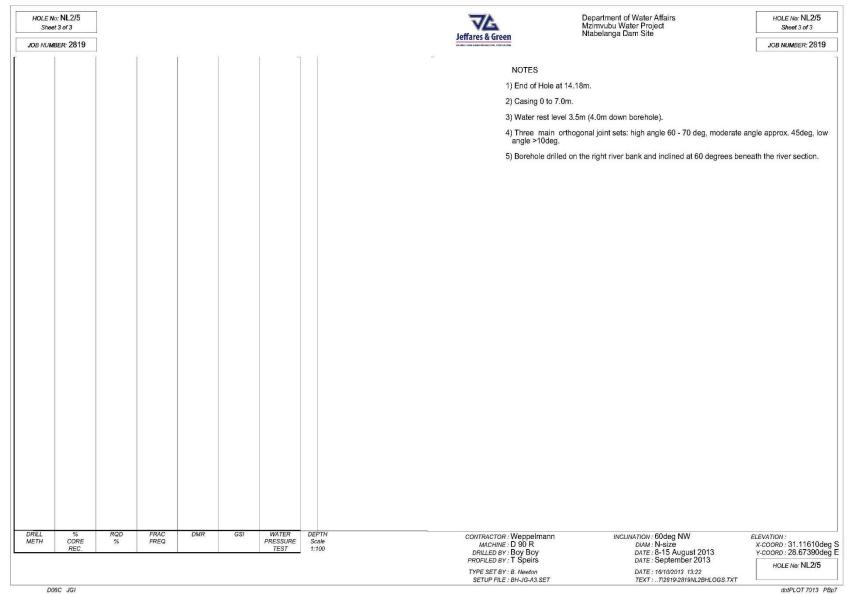


Fig E-35-3: Borehole Logs (NL 2/5)

E - 31

Tel:012 8047516 Tel:012 8047516 Tel:012 8047516 Tel:012 8042079

605 Moreleta Str Silverton Pretoria O184

cell: W Coventry

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu river DRILLER: Boy boy

BOREHOLE NR: NL 2/5

DATE &	STAGES	TESTING	GAUGE	PRESURES	WATER INTAKE
Packer Description		TIME			BY HOLE
	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
	FROM 7.00m	10	45kpa	45kpa	7 L
14/07/2013		10	80	80	120L
	TO 10.00m	10	115	115	223L
DP		10	80	80	164L
		10	45kpa	45kpa	39L
	FROM 10.00m	10	65kpa	65kpa	328L
		10	110	110	413L
DP	TO 13.00m	10	160	160	537L
		10	110	110	373L
	EDOM 40.00	10	65kpa	65kpa	352L
	FROM 13.00m	10	80kpa	80kpa	1399L
DD	TO 40 00-	10	140	140	946L
DP	TO 16.00m	10 10	200 140	200 140	1126L 862L
	i.	10	80kpa	80kpa	717L
	FROM 16.00m	10	100kpa	100kpa	239L
	FROW TO.UUM	10	170 170	170 170	325L
DP	TO 19.00m	10	250	250	391L
טר	10 19.00111	10	170	170	297L
	*	10	100kpa	100kpa	171L
	FROM 19.00m	10	125kpa	125kpa	935L
	FROW 19.00III	10	220	220	1241L
DP	TO 22.00m	10	320	320	1363L
Dr	10 22.00111	10	220	220	1208L
	è	10	125kpa	125kpa	890L
	FROM 22.00m	10	155kpa	155kpa	OL OL
	1 1 CON 22.00111	10	270	270	OL OL
DP	TO 25.00M	10	385	385	558L
	1 = =====	10	270	270	0L
	-	10	155kpa	155kpa	OL OL
15/07/2013	FROM 25.00m	10	170kpa	170kpa	723L
		10	300	300	1067L
DP	TO 28.00m	10	430	430	1547L
		10	300	300	1006L
		10	170kpa	170kpa	803L
	FROM 28.00m	10	190kpa	190kpa	0L
	6	10	330	330	1153L
DP	TO 31.00m	10	475	475	1557L
		10	330	330	1424L
		10	190kpa	190kpa	843L
	FROM 31.00m	10	215kpa	215kpa	0L
		10	380	380	726L
DP	TO 34.00m	10	545	545	1035L
		10	380	380	745L
		10	215kpa	215kpa	OL.
	FROM 34.00m	10	245kpa	245kpa	675L
	TO E 1 2	10	430	430	1223L
SP	TO End of	10	610	610	1547L
	Borehole	10 10	430 245kpa	430 245kpa	1703L 704L
REMARKS:					

Fig E-36: Water Pressure Testing Report (NL 2/5)

Fig E-37: Borehole NL 2/5 Core Box 1 of 6

Fig E-38: Borehole NL 2/5 Core Box 2 of 6

Fig E-39: Borehole NL 2/5 Core Box 3 of 6

Fig E-40: Borehole NL 2/5 Core Box 4 of 6

Fig E-41: Borehole NL 2/5 Core Box 5 of 6

Fig E-42: Borehole NL 2/5 Core Box 6 of 6

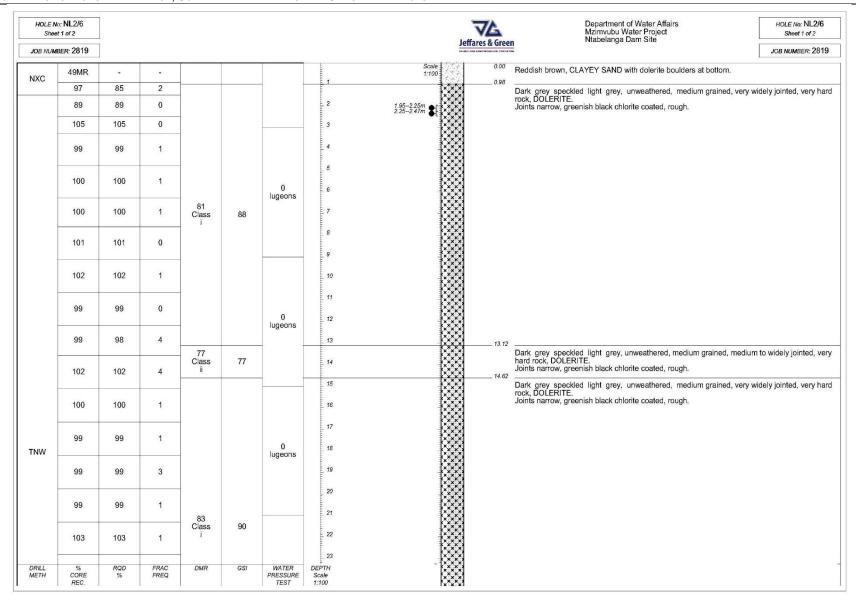


Fig E-43-1: Borehole Logs (NL 2/6)

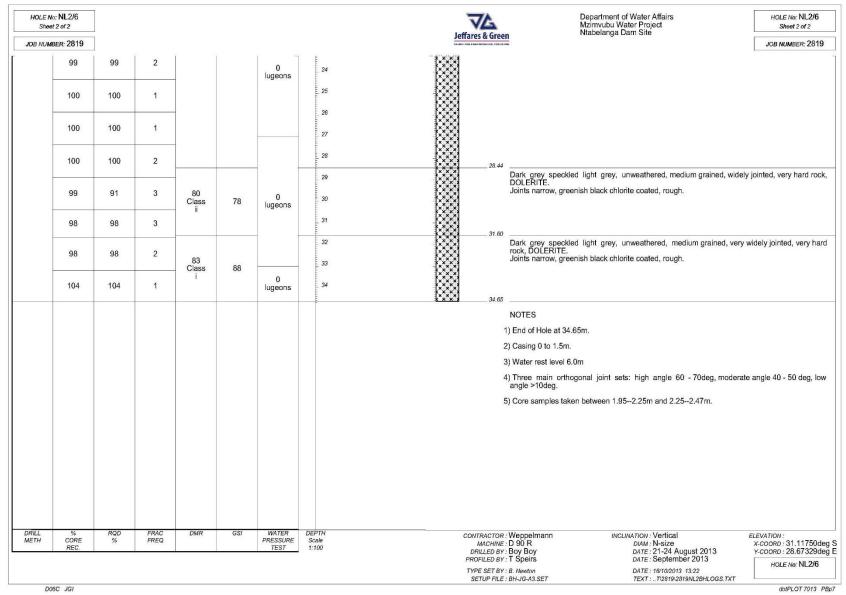
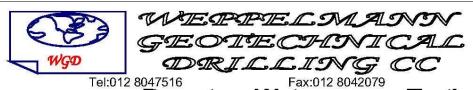



Fig E-43-1: Borehole Logs (NL 2/6)

605 Moreleta Str Silverton Pretoria O184

cell: W Coventry

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu river

BOREHOLE NR: NL 2/6

DRILLER: Boy-Boy

DATE &	STAGES	TESTING	GAUGE	PRESURES	WATER INTAKE
Packer Description		TIME	2000 2000 2000 2000 2000		BY HOLE
	METERS	REQUIRED	REQUIRED	ACTUAL	TOTAL LITRES
		MINUTES	PRESSURES	PRESSURES	
23/08/2013	FROM	10 min	25 kpa		0 L
	3,00	10 min	50		0
DP	TO	10 min	70		0
	9,00	10 min	50		0
		10 min	25		0
	FROM	10 min	80 kpa		0 L
	9,00	10 min	140		0
DP	TO	10 min	200		0
	15,00	10 min	140		0
		10 min	80		0
	FROM	10 min	135 kpa		0 L
	15,00	10 min	240		0
DP	TO	10 min	340		0
	21,00	10 min	240		0
		10 min	135		0
	FROM	10 min	190 kpa		0 L
	21,00	10 min	330		0
DP	TO	10 min	475		0
	27,00	10 min	330		0
		10 min	190		0
	FROM	10 min	245 kpa		0 L
	27,00	10 min	430		0
DP	TO	10 min	610		0
	33,00	10 min	430		0
		10 min	245		0
	FROM	10 min	300 kpa		0 L
	33,00	10 min	520		0
SP	TO	10 min	745		0
Promises	34.65	10 min	520		0
	2000 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 min	300		0
REMARKS:					

Fig E-44: Water Pressure Testing Report (NL 2/6)

Fig E-45: Borehole NL 2/6 Core Box 1 of 5

Fig E-46: Borehole NL 2/6 Core Box 2 of 5

Fig E-47: Borehole NL 2/6 Core Box 3 of 5

Fig E-48: Borehole NL 2/6 Core Box 4 of 5

Fig E-49: Borehole NL 2/6 Core Box 5 of 5

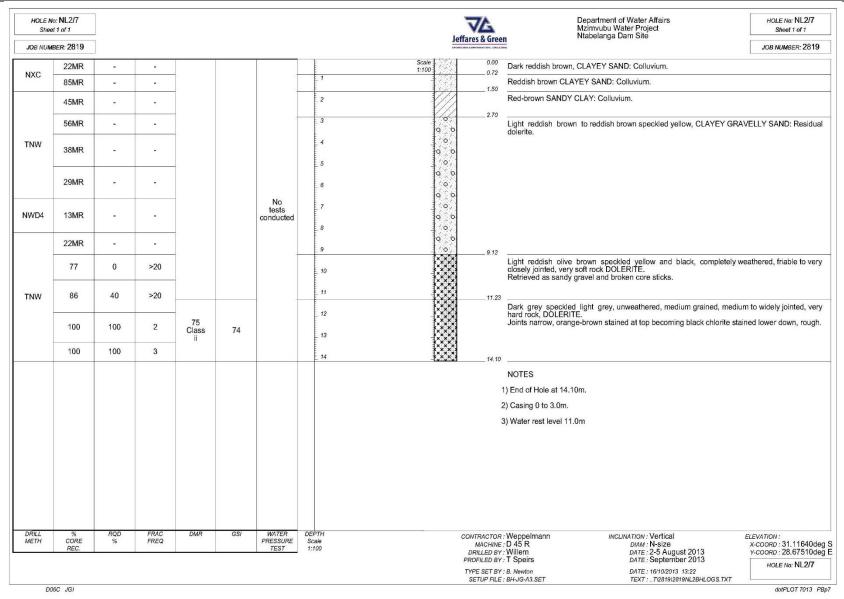


Fig E-50: Borehole Logs (NL 2/7)

Fig E-51: Borehole NL 2/7 Core Box 1 of 2

Fig E-51: Borehole NL 2/7 Core Box 2 of 2

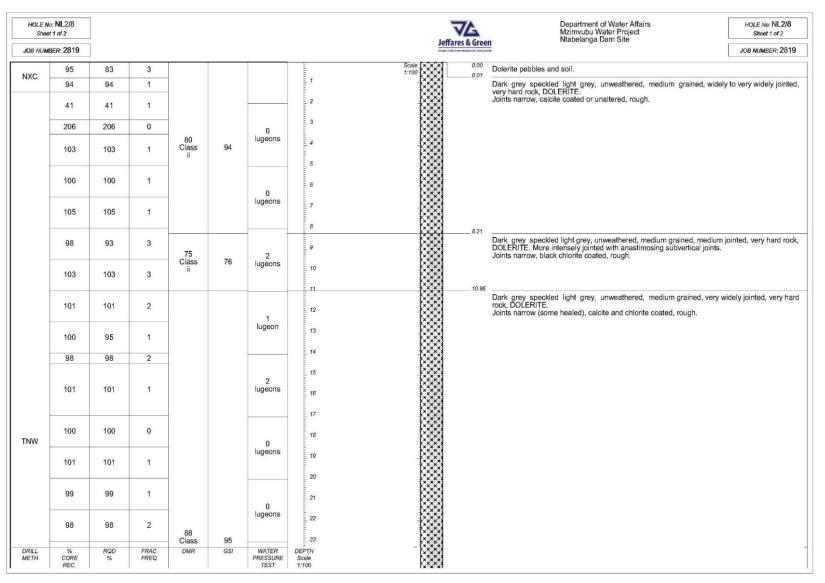


Fig E-52-1: Borehole Logs (NL 2/8)

DIRECTORATE: OPTIONS ANALYSIS OCTOBER 2014

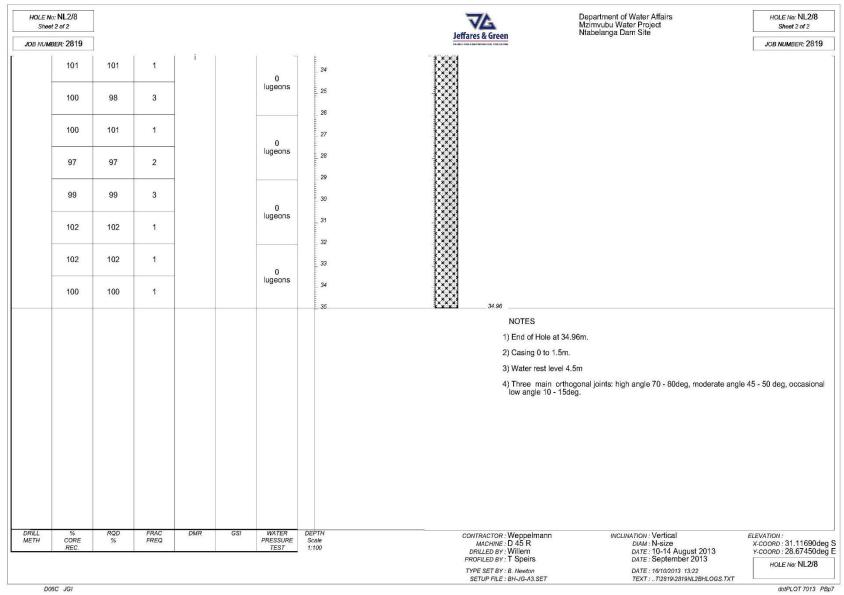


Fig E-52-2: Borehole Logs (NL 2/8)

605 Moreleta Str Silverton Pretoria O184 cell: W Coventry

Report on Waterpresure Testing :0828091797

SCHEME: Mzimvubu river DRILLER: Willem

BOREHOLE NR: NL 2/8

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
,	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
	FROM 2.00m	10	20kpa	20kpa	74L
		10	30	30	4L
DP	TO 5.00m	10	45	45	1L
		10	30	30	0L
		10	20kpa	20kpa	0L
	FROM 5.00m	10	45kpa	45kpa	0L
		10	80	80	0L
DP	TO 8.00m	10	115	115	1L
		10	80	80	0L
		10	45kpa	45kpa	0L
	FROM 8.00m	10	70kpa	70kpa	3L
		10	130	130	25L
DP	TO 11.00m	10	180	180	11L
		10	130	130	20L
		10	70kpa	70kpa	2L
	FROM 11.00m	10	100kpa	100kpa	6L
		10	170	170	24L
DP	TO 14.00m	10	250	250	0L
		10	170	170	1L
		10	100kpa	100kpa	3L
0.	FROM 14.00m	10	125kpa	125kpa	6L
10000000		10	220	220	6L
DP	TO 17.00m	10	320	320	
		10	220	220	108L 6L 15L 264L 6L
		10	125kpa	125kpa	
	FROM 17.00m	10	155kpa	155kpa	
	=0 00 00	10	270	270	
DP	TO 20.00m	10	385	385	0L
		10	270	270	1L
	EDOM 00.00	10	155kpa	155kpa	1L
	FROM 20.00m	10	180kpa	180kpa	3L
DP	TO 23.00m	10 10	320 450	320 450	2L 6L
DP	10 23.00111	10	320	320	2L
	-	10	180kpa	180kpa	1L
	FROM 23.00m	10	210kpa	210kpa	2L
	FROW 23.00M	10	210kpa 365	210kpa 365	2L 2L
DP	TO 26.00m	10	520	520	4L
OI.	10 20.00111	10	365	365	5L
		10	201kpa	201kpa	3L
14/08/2013	FROM 26.00m	10	325kpa	325kpa	4L
1 1/00/2010	1.1.OW 20.00III	10	410	410	5L
	TO 29.00m	10	590	590	2L
DP	. 5 20.00111	10	410	410	7L
		10	325kpa	325kpa	3L
	FROM 29.00m	10	265kpa	265kpa	3L
	1.1.OW 20.00III	10	460	460	1L
DP	TO 32.00m	10	665	665	2L
DES.		10	460	460	4L
		10	265kpa	265kpa	3L
	FROM 32.00m	10	290kpa	290kpa	3L
	TACINI OZ.OUIII	10	510	510	6L
SP	TO End of	10	725	725	5L
<u></u>	Borehole	10	510	510	1L
	Doronoio	10	290kpa	290kpa	2L
REMARKS:		10	Συνιγα	ευνιγα	£-L

Fig E-53: Water Pressure Testing Report (NL 2/8)

Fig E-54: Borehole NL 2/8 Core Box 1 of 5

Fig E-55: Borehole NL 2/8 Core Box 2 of 5

Fig E-56: Borehole NL 2/8 Core Box 3 of 5

Fig E-57: Borehole NL 2/8 Core Box 4 of 5

Fig E-58: Borehole NL 2/8 Core Box 5 of 5

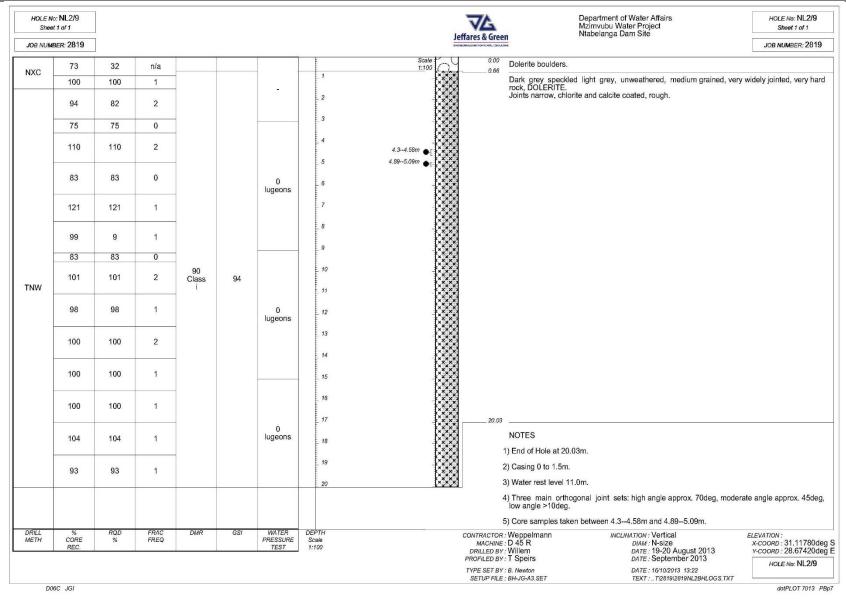


Fig E-59: Borehole Logs (NL 2/9)

605 Moreleta Str Silverton Pretoria O184

cell: W Coventry

Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu river DRILLER: Willem

BOREHOLE NR: NL 2/9

DATE & Packer Description	STAGES	TESTING TIME	GAUGE	PRESURES	WATER INTAKE BY HOLE
	METERS	REQUIRED MINUTES	REQUIRED PRESSURES	ACTUAL PRESSURES	TOTAL LITRES
22/08/2013	FROM	10 min	25 kpa		0 L
	3	10 min	50		0
DP	TO	10 min	70		0
	9	10 min	50		0
		10 min	25		0
	FROM	10 min	80 kpa		0 L
	9	10 min	140		0
DP	TO	10 min	200		0
	15	10 min	140		0
		10 min	80		0
SP	FROM	10 min	135 kpa		0 L
	15	10 min	240		0
	TO	10 min	340		0
	20.03	10 min	240		0
		10 min	135		0
REMARKS:			•		

Fig E-60: Water Pressure Testing Report (NL 2/9)

Fig E-61: Borehole NL 2/9 Core Box 1 of 3

Fig E-62: Borehole NL 2/9 Core Box 2 of 3

Fig E-63: Borehole NL 2/9 Core Box 3 of 3

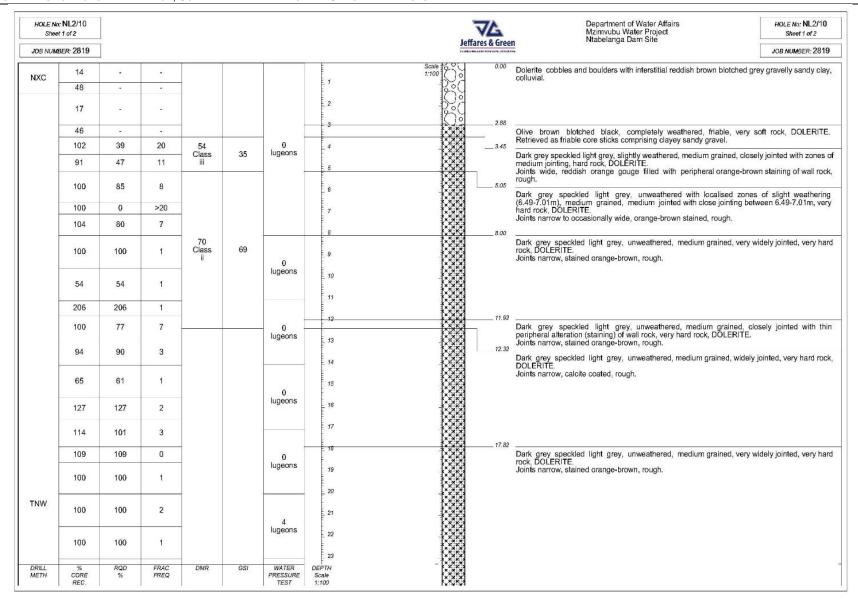


Fig E-64-1: Borehole Logs (NL 2/10)

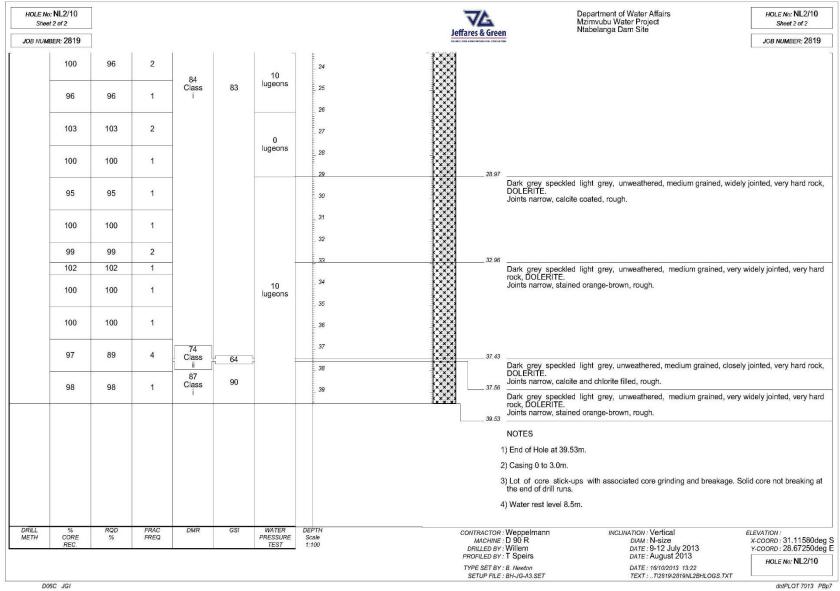


Fig E-64-2: Borehole Logs (NL 2/10)

WERRELMALNOV GEOTECHIVICAL DRILLING CC

605 Moreleta Str Silverton Pretoria 0184

cell: W Coventry

Tel:012 8047516 Fax:012 8042079 Report on Waterpresure Testing:0828091797

SCHEME: Mzimvubu river DRILLER: Willem

BOREHOLE NR: NL 2/10

DATE &	STAGES	TESTING	GAUGE	PRESURES	WATER INTAKE
Packer Description		TIME	4,000		BY HOLE
	METERS	REQUIRED	REQUIRED	ACTUAL	TOTAL LITRES
		MINUTES	PRESSURES	PRESSURES	
	FROM 5.00m	10	45kpa	45kpa	190L
20-Jul		10	80kpa	80kpa	9L
	TO 8.00m	10	115kpa	115kpa	261L
DP		10	80kpa	80kpa	90L
		10	115kpa	115kpa	0
	FROM 8.00m	10	70kpa	70kpa	0
		10	130kpa	130kpa	1L
DP	TO 11.00m	10	180kpa	180kpa	0
	6	10	130kpa	130kpa	0
		10	70kpa	70kpa	0
	FROM 11.00m	10	100kpa	100kpa	0
		10	170kpa	170kpa	0
DP	TO 14.00m	10	250kpa	250kpa	0
		10	170kpa	170kpa	0
		10	100kpa	100kpa	0
	FROM 14.00m	10	125kpa	125kpa	0
		10	220kpa	220kpa	480L
DP	TO 17.00m	10	320kpa	320kpa	107L
		10	220kpa	220kpa	0
		10	125kpa	125kpa	0
	FROM 17.00m	10	155kpa	155kpa	0
		10	270kpa	270kpa	0
DP	TO 20.00m	10	358kpa	358kpa	0
		10	270kpa	270kpa	0
		10	155kpa	155kpa	0
00000	FROM 20.00m	10	180kpa	180kpa	0
21-Jul		10	320kpa	320kpa	684L
DP	TO 23.00M	10	450kpa	450kpa	1115L
		10	320kpa	320kpa	430L
		10	180kpa	180kpa	20L
	FROM 23.00m	10	210kpa	210kpa	29L
		10	365kpa	365kpa	0
DP	TO 26.00m	10	520kpa	520kpa	715L
		10	365kpa	365kpa	360L
		10	210kpa	210kpa	61L
	FROM 26.00m	10	235kpa	235kpa	2L
DP		10	410kpa	410kpa	542L
	TO 29.00m	10	590kpa	590kpa	721L
		10	410kpa	410kpa	458L
		10	235kpa	235kpa	0
	FROM 29.00m	10	265kpa	265kpa	250L
		10	460kpa	460kpa	962L
SP	TO	10	655kpa	590kpa	731L
		10	460kpa	460kpa	567L
		10	265kpa	265kpa	289L
REMARKS:	Single packer us	ed from 29.00m	to bottom of BH. I	Due to bubble pac	ker not advancing

Water Pressure Testing Report (NL 2/10) Fig E-65:

closure of BH

Fig E-66: Borehole NL 2/10 Core Box 1 of 6

Fig E-67: Borehole NL 2/10 Core Box 2 of 6

Fig E-68: Borehole NL 2/10 Core Box 3 of 6

Fig E-69: Borehole NL 2/10 Core Box 4 of 6

Fig E-70: Borehole NL 2/10 Core Box 5 of 6



Fig E-71: Borehole NL 2/10 Core Box 6 of 6

Fig E-72-1: Borehole Logs (NL 2/11)

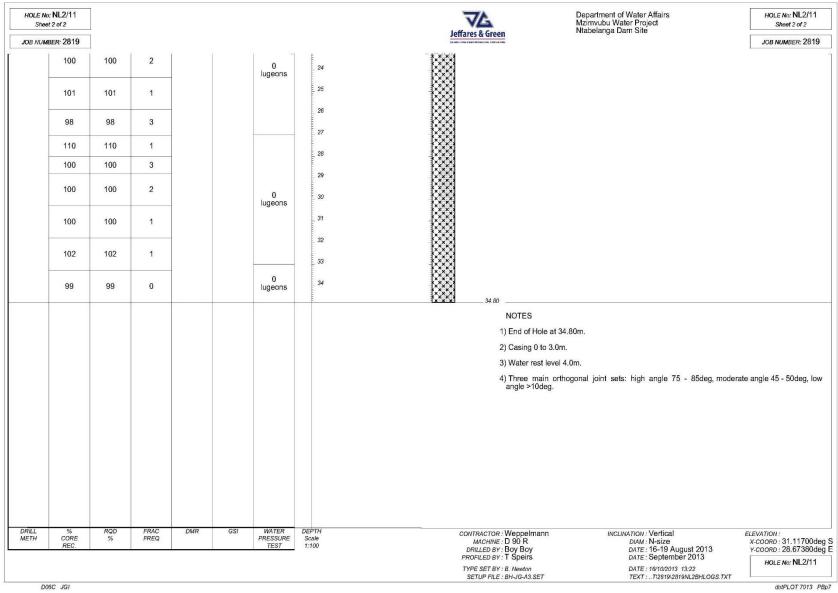


Fig E-72-2: Borehole Logs (NL 2/11)

605 Moreleta Str Silverton Pretoria O184 cell: W Coventry

Report on Waterpresure Testing: 0828091797 BOREHOLE NR: NL 2/11

SCHEME: Mzimvubu river DRILLER: Boyboy

DATE &	STAGES	TESTING	GAUGE	PRESURES	WATER INTAKE
Packer Description		TIME			BY HOLE
	METERS	REQUIRED	REQUIRED	ACTUAL	TOTAL LITRES
		MINUTES	PRESSURES	PRESSURES	
	FROM 3.00m	10	25 kpa		0 L
20/08/2013		10	50		0
	TO 9.00m	10	70		0
DP		10	50		0
	3	10	25		0
	FROM 9.00m	10	80 kpa		0 L
		10	140		0
DP	TO 15.00m	10	200		0
		10	140	7	0
		10	80	V	0
	FROM 15.00m	10	135 kpa		0 L
		10	240		0
OP	TO 21.00m	10	340		0
		10	240		0
		10	135		0
	FROM 21.00m	10	190 kpa		0 L
		10	330		0
DP	TO 27.00m	10	475		0
		10	330	,	0
		10	190		0
	FROM 27.00m	10	245 kpa		0 L
		10	430		0
DP	TO 33.00m	10	610		0
		10	430		0
		10	245		0
	FROM 33.00m	10	300 kpa		0 L
		10	520		0
SP	TO 34.80M	10	745		0
	End of hole	10	520		0
		10	300		0

Fig E-73: Water Pressure Testing Report (NL 2/11)

Fig E-74: Borehole NL 2/11 Core Box 1 of 6

Fig E-75: Borehole NL 2/11 Core Box 2 of 6

Fig E-76: Borehole NL 2/11 Core Box 3 of 6

Fig E-77: Borehole NL 2/11 Core Box 4 of 6

Fig E-78: Borehole NL 2/11 Core Box 5 of 6

Fig E-79: Borehole NL 2/11 Core Box 6 of 6

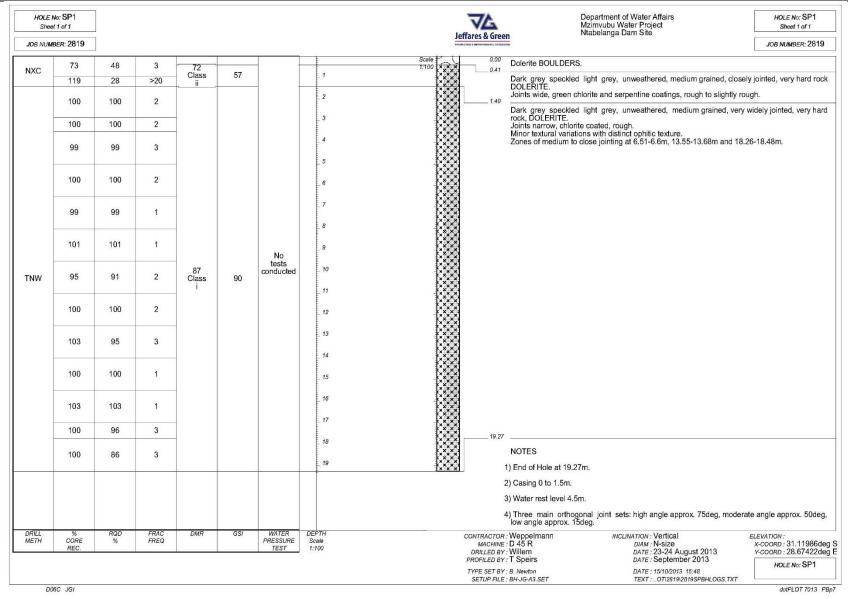


Fig E-80: Borehole Logs (SP 1)

Fig E-81: Borehole SP 1 Core Box 1 of 3

Fig E-82: Borehole SP 1 Core Box 2 of 3

Fig E-83: Borehole SP 1 Core Box 3 of 3

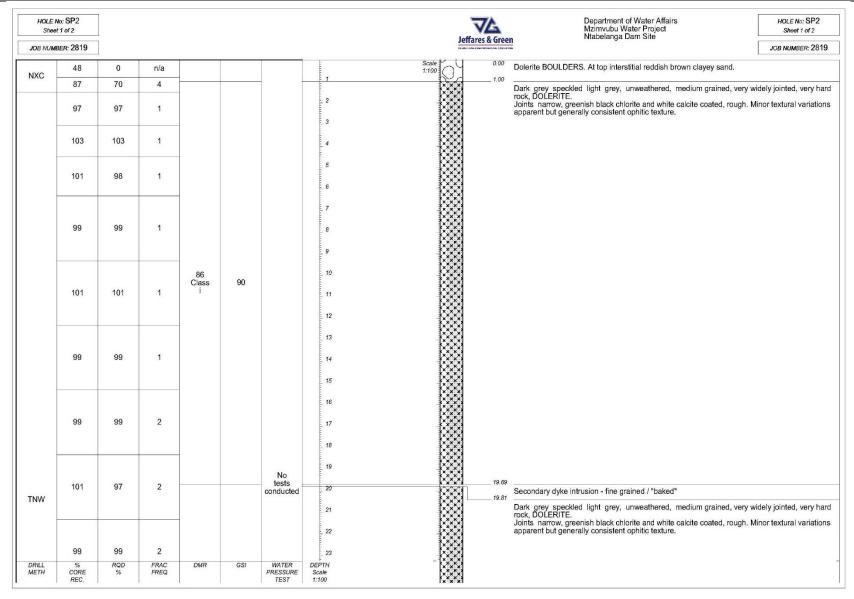


Fig E-84-1: Borehole Logs (SP 2)

E - 69

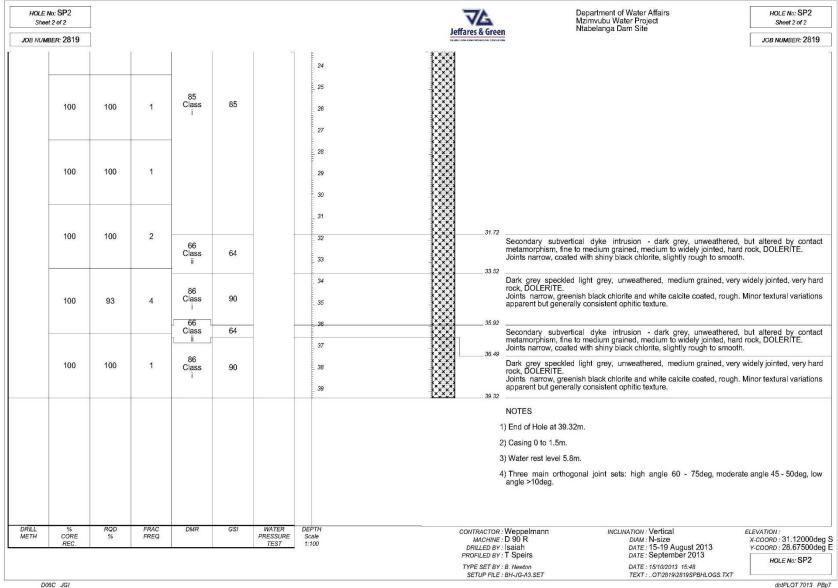


Fig E-84-2: Borehole Logs (SP 2)

E - 70

Fig E-85: Borehole SP 2 Core Box 1 of 6

Fig E-86: Borehole SP 2 Core Box 2 of 6

Fig E-87: Borehole SP 2 Core Box 3 of 6

Fig E-88: Borehole SP 2 Core Box 4 of 6

Fig E-89: Borehole SP 2 Core Box 5 of 6

Fig E-90: Borehole SP 2 Core Box 6 of 6

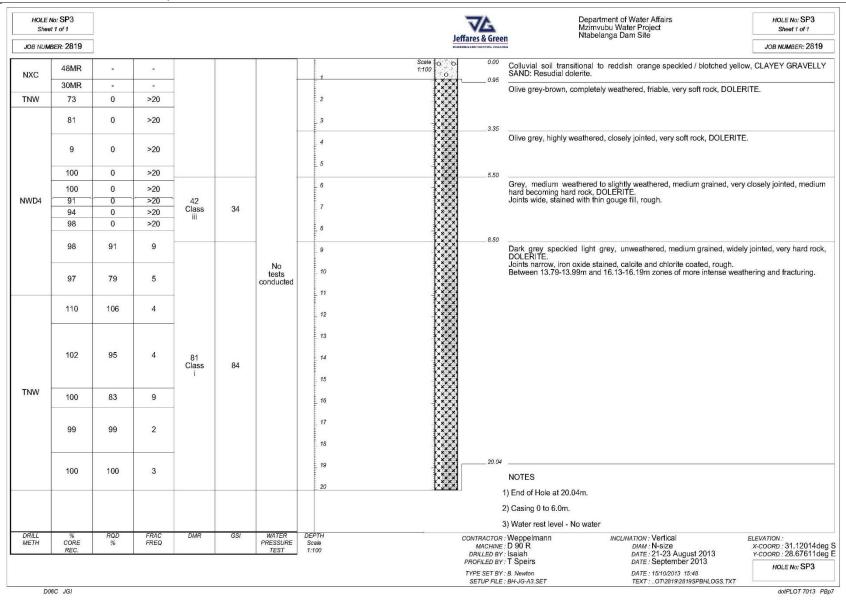


Fig E-91: Borehole Logs (SP 3)

E - 74

DIRECTORATE: OPTIONS ANALYSIS

Fig E-92: Borehole SP 3 Core Box 1 of 3

Fig E-93: Borehole SP 3 Core Box 2 of 3

Fig E-94: Borehole SP 3 Core Box 3 of 3

APPENDIX F

COUNCIL FOR GEOSCIENCE REPORT ON SEISMIC REFRACTION AND ELECTRICAL RESISTIVITY SURVEYS

Report on the Refraction Seismic and Electrical Resistivity surveys

Prepared for

Jeffares & Green (Pty) Ltd for the Ntabelanga dam site feasibility study.

By

M. Sethobya, P. Nyabeze and R. Legotlo.

Council for Geoscience, South Africa

Project No: C0- 2010-5122

Report No:2013-0257

Confidential

© Council for Geoscience

Table of Contents

E	cecuti	ive Summary	4
1	INT	RODUCTION	5
	1.1 1.2	BACKGROUNDOBJECTIVES	5
2	GEO	DLOGY OF THE AREA	€
3	ME	THODOLOGY	7
	3.1 3.2 3.3 3.4	SEISMIC METHOD OVERVIEWSEISMIC DATA ACQUISITION AND QUALITY CONTROLELECTRIC RESISTIVITY TOMOGRAPHY (ERT)- METHOD OVERVIEWERT DATA ACQUISITION AND QUALITY CONTROL	8
4	Data	a Summary	10
	4.1 4.2	SEISMICSERT	10
5	DAT	TA PROCESSING AND INTERPRETATION	11
	5.1 5.2	SEISMICSERT	
6	RES	SULTS	12
(6.1 6.2 6.3 6.4	Line 1	14 16
7	COI	NCLUSIONS AND RECOMMENDATIONS	20
8	Ref	erences	21

Table of Figures

Figure 1: The survey area showing location of the surveyed lines. The red marks indicate the start
positions of the Seismics and ERT lines6
Figure 2. The seistronix Ras-24 seismograph with a battery source connected to it
Figure 3. a, Illustration of the dipole-dipole electrode configuration as used in resistivity survey to
measure subsurface resistivity. b, The IRIS Syscal Pro Switch 72 multi electrode resistivity
instrument with a battery source9
Figure 4. Reference seismic velocity range plot for rocks.(Adopted from Sheriff 1978, American
Association of petroleum geologists.)
Figure 5. Seimics section along line 1
Figure 6. ERT section along line 1 (Dipole dipole array)
Figure 7. Modelled Seismic section along line 2
Figure 8. ERT section along line 2
Figure 9. ERT section along line 2, with the extended portion.(270m)
Figure 10. Modelled seismic setion along line 3
Figure 11. ERT section along line 3 (dipole-dipole)
Figure 12. An image showing the relative depth extend of the thick overlying material, some dark
grey-brownish colluvium and highly metamorphosed sandtones in an exposure zone along the
position of line 3
Figure 13.Modelled seismic section along line 4
Figure 14.An ERT section along line 4

Executive Summary

Refraction seismic and Electrical Resistivity tomography(ERT) surveys were conducted as part of the Mzimbuvu water project at the Ntabelanga Dam site along the Tsitsa river, by the Council for Geoscience on behalf of Jefferson and Green(Pty) Ltd as part of their geotechnical investigations. The main aims of the surveys were to accurately determine;

- 1. the thickness of the overburden (transported and residual soils) that overly the bedrock
- 2. the depth to bedrock and
- 3. Determine the rippability of the profile at the dam site

The surveys were carried out at predetermined lines at each side of the river. For purposes of easy data management, each portion (spread of measured line) was treated as an individual line. A total of 4 lines were surveyed. See figure 1.All the lines were sampled at 5m intervals for both the Seismics and ERT surveys. Data was collected at exactly the same points/stations for the two techniques to ensure accuracy in comparing the results. The 24 channel Seistronox seimograph was used to do the seismic surveys. A sledge hammer and base plate were used as a source of energy.

Very high quality shots were observed with stacking and repeat shots being taken for quality control purposes. For the ERT surveys, an IRIS automated resistivity meter-Syscal Pro Switch 72 was employed to aquire ground resitivity data. The lines were then marked with a handheld Garmin SCx60. The topography for data processing was surveyed using a submeter accuracy Leica RS20 differential GPS.

1 INTRODUCTION

1.1 BACKGROUND

The Council for Geoscience was appointed by Jeffares & Green (Pty) Ltd in August 2013 to conduct Geophysical Seismic and multi-Electrode Resistivity Tomography (ERT) Investigations. The investigations were to be carried out at specifically selected lines at the intended Ntabelanga Dam site along the Tsitsa river, for the Mzimbuvu Water project near the town of Tsolo, Eastern Cape province. The seismic surveys were meant to augment the drilling being carried out by the client and to allow interpolation between and extrapolation from borehole data in order to determine overburden thickness, depth to bedrock and to determine the rippability of the profile at the dam site location as part of the engineering properties classification for the dam design.

The specified survey areas as per the terms of refence are summarized in Table 1 with a total of 810m having been marked for the Seismic and ERT surveys.

Table 1

Location	Line Length	Measured length(Seismics)	Measured length(ERT)	Borehole/s intersected
Line 1	180m	180m	180m	NL29, NL26 & N2.
Line 2	180m	180m	270m	N2
Line 3	180m	180m	180m	N3
Line 4	180m	180m	180m	N1

1.2 OBJECTIVES

As part of the augmentation of the drilling program information, the main aims of the seismic investigations were to accurately determine;

- 1. the thickness of the overburden (transported and residual soils) that overly the bedrock
- 2. the depth to bedrock and
- 3. Determine the rippability of the profile at the dam site location
- 4.

The seismic and ERT survey results are also to be used for interpolation between and extrapolation from borehole data.

Page 5 of 21

2 GEOLOGY OF THE AREA.

The area falls within the Ntabene formation of the Molteno subgroup in the main Karoo sequence. Predominant lithological bodies are the sandstones, red mudstones and shale, with dolerite intrusions (Johnson et al,2006), which are clearly mapped around the survey area. Position of the survey area follows a dolerite outcrop on the south-eastern side of the river and a relatively thick mudstone cover overlying sandtone beds in the western side of the river (figure 1). As a dam design strategy, excavation is envisaged to reach depths of the competent dolerite body to ensure support of the foundation structure.

Figure 1: The survey area showing location of the surveyed lines. The red marks indicate the start positions of the Seismics and ERT lines

Page 6 of 21

3 METHODOLOGY

3.1 SEISMIC METHOD OVERVIEW

Seismic methods measure the velocity of energy transmitted through the soil and rocks. Inferences can be made from observed velocities and then be used to determine subsurface information that include depth to bedrock, bedrock topography, rippability of geological layers as well as other geological information such as the presence of faults, fractures, shear zones and water. The method has an advantage of less interference common with other methods as it can be applied to investigations located near power lines, ferrous objects and areas with saturated clays and those with topographic irregularities.

3.2 SEISMIC DATA ACQUISITION AND QUALITY CONTROL

The Ras-24 is an exploration seismograph that is manufactured by Seistronix in the USA. This instrument is designed to carry out seismic refraction surveys and has the capability of using up to 24 channels to collect data in the field. The Ras 24 uses two seismic cables that are connected to a set of 24 geophones. The maximum distance between the géophones is 5m (as specified by the cable), with the maximum length being 115m. Distance between the geophones depends on the depth of investigation and the objectives of the survey. The Ras-24 permits the user to stack multiple shots on top of each other, which in-turn increase the data quality and minimise the noise. The acquisition parameters (sample interval, record length, delay, filters, stack mode and stack polarity) are chosen by looking at the geology of the area. If the parameters do not seem suitable when the survey is started, the parameters can be changed on site. Figure 2 shows the Seistronix Ras 24 seismograph with the trigger cable and the battery source connected to it.

To improve data quality stacking of shots was used per shot location in order to increase the signal to noise ratio. Depending on the signal strength of the arrivals a minimum of two signals were stacked if the arrival breaks were clear and distinct and in some cases up to twenty signals or more were stacked in order to amplify the signal to noise ratio especially for the off-set shots. For every shot location at least one or more repeat shot records were taken as an additional quality control measure for use during the data processing.

The Leica RS20 Differential GPS was used to take the coordinates of each geophone location and where poor satellite reception was encountered interpolation using the Leica program was done.

Page 7 of 21

Figure 2. The seistronix Ras-24 seismograph with a battery source connected to it.

3.3 ELECTRIC RESISTIVITY TOMOGRAPHY (ERT)- METHOD OVERVIEW

Multi-electrode resistivity tomography (ERT) surveys deduce the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The main principle of ground electrical resistivity is based on that, the distribution of electrical potential in the ground around a current-carrying electrode depends on the electrical resistivity and distribution of surrounding soils and rocks. The resistivity survey consist of current and potential electrodes, the current is directly injected into the ground by two electrodes (C1 and C2) and the voltage measured by two potential electrodes (P1 and P2) as illustrated in Figure 3.

The true resistivity of the subsurface can be determined by inversion of the measured apparent resistivity values using a computer program. The current and potential electrodes are arranged in a linear array like Schlumberger, Wenner and dipole-dipole arrays. Each array is capable of performing a certain objective of the study; therefore the choice of the array is dependent on the nature of the study and the efficiency in acquiring data.

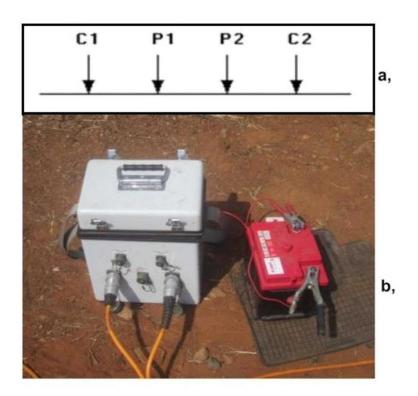


Figure 3. a, Illustration of the dipole-dipole electrode configuration as used in resistivity survey to measure subsurface resistivity. b, The IRIS Syscal Pro Switch 72 multi electrode resistivity instrument with a battery source.

3.4 ERT DATA ACQUISITION AND QUALITY CONTROL

ERT data was acquired using Syscal Pro Switch 72 multi electrode resistivity instrument (Figure 3). The instrument uses multi-core cables for controlling a set of 72 electrodes connected in a line. Resistivity data is measured automatically and stored in an internal memory. It has an internal 12V battery and an option to use an external battery for increased operation hours.

Dipole-dipole array was used to acquire data at 5 m electrode spacing to ensure more detailed data is acquired and maximum depth coverage at high lateral resolution.

4 DATA SUMMARY

4.1 SEISMICS

All lines were measured to a length of 180m owing to the nature of the seismic cables being used. Each cable measures a length of 60m(a single spread), thereby allowing 3 spreads per line. Efforts were made to measure lines at their exact locations and to cover the area closest to the river as best as possible.

4.2 ERT

All lines were measured to a distance of 180m using both the dipole dipole and Schlumbegger arrays. The ERT lines were measured at the same positions where seismic data was collected, barring line 2, which had a 90m extension in the Northeastern direction (Figure 9).

A summary of the survey lines and coodinates is given in table 1.

Table 1: Summary of seismic and ERT traverses details as picked by the Leica DGPS.

Line	Length	Start Coordinates		End Coordinates	
Name	(m)	Lat	Long	Lat	Long
Line 1	180	-31.11781°	28.673819°	-31.11709°	28.6724991°
Line 2	180	-31.11793°	28.672465°	-31.11663°	28.673464°
Line 3	180	-31.116922°	28.672119°	-31.116267°	28.670562°
Line 4	180	-31.117380°	28.671368°	-31.115903°	28.672053°
Line	270				
2_ext		-31.11793°	28.672465°	-31.11611°	28.674196°

5 DATA PROCESSING AND INTERPRETATION

5.1 SEISMICS

Data was dumped onto a PC from the Seismograph on a daily basis after field work. Shots were analysed for obvious noise and each shot was compared with its duplicate since 2 shots were taken per every shot location as a quality control procedure. At each shot location, multiple stacks were taken to ensure that high data quality is maintained. A method called the Plus-Minus method whereby the forward and reverse travetimesare used to determine the depth to bedrock under each geophone was then used to do interpretation. This method entails entering the first arrivals for all shot configurations along the spread, plotting of traveltime curves (using the spreadsheet plotting function), selection of the seismic velocities, and some simple column manipulation (Fourie and Odgers, 1995). The spreadsheet will then automatically calculate the parameters needed to determine the depth to the refractors and allows for elevation corrections.

Forward and reverse traveltimes are plotted against offset, from which the seismic velocity of the weathering layer and the refractor(s) may be determined. These velocities are then used to calculate the geometrical factor known as the k- factor for the refraction spread. The k-factor is then multiplied by the 'Plus' values to provide the depth to the refractor at each receiver location.

The 'Plus' values are obtained by adding the forward and reverse traveltimes at each receiver and subtracting the total traveltime from the sum whilst the 'Minus' values calculated by substracting the forward from the reverseat each receiver station. A plot of the minus versus the offset provides information on the refractor velocity given by:

(Refractor velocity = 2×10^{-2} x the slope of the Minus curve)

A reference velocity range plot is used to differenciate and interpret different rock types and formation based on their responses to seimic wave propagation.(figure 4)

5.2 ERT

After the data acquisition phase, data is stored in the internal memory of the instrument and downloaded onto a computer. The resistivity measurements are reduced to apparent resistivity values using the Prosys 11 software. The data is then interpreted using a 2D model that consists of a large number of rectangular blocks. A computer program (RES2DINV) is used to determine the resistivity of the blocks for the calculated apparent resistivity values to agree with the field measured values. Using the modeling program, 2D models of the subsurface resistivity are

Page 11 of 21

generated. The modeled results are then exported to "XYZ" format and geo-referenced for 2D gridding in Geosoft software.

6 RESULTS

The results will be presented and discussed per specific line for both the techniques. The tables included in this section will represent the relative results comparims for each line and deduced interpretations. Seismics results will be presented as 2D sections along the measured lines. ERT survey results are presented as 2D resistivity-depth models with the location of boreholes projected onto the models where applicable.

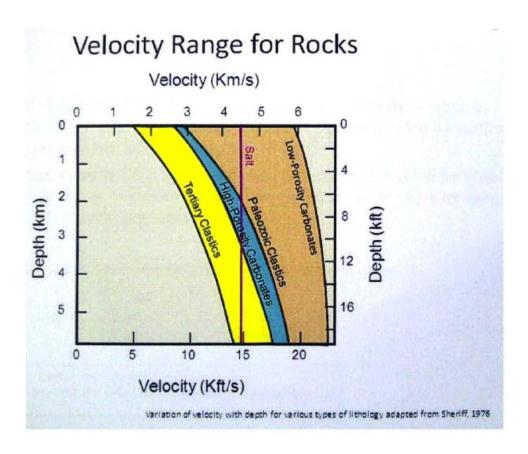


Figure 4. Reference seismic velocity range plot for rocks.(Adopted from Sheriff 1978, American Association of petroleum geologists.)

6.1 Line 1

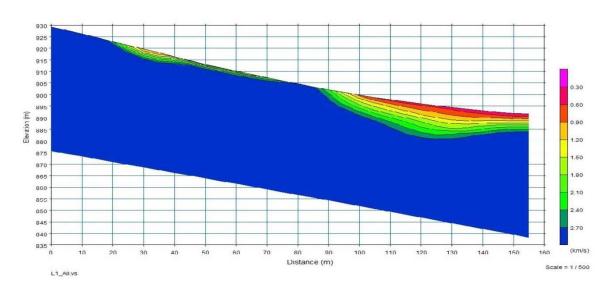


Figure 5. Seimics section along line 1.

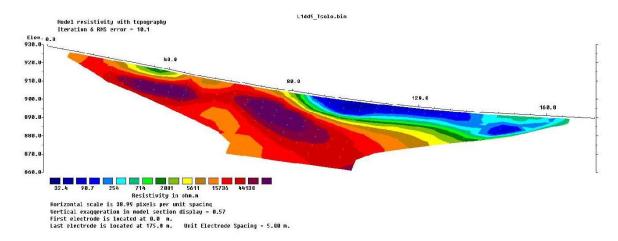


Figure 6. ERT section along line 1 (Dipole dipole array)

Results discussions-Line 1

The sections on this line shows a competent and well exposed dolerite outcrop that extent from the start of line to the river. Closer to the river the dolerite is covered by thin overburden comprising some clayey gravel and partly saturated residium. The sections concurs well with results from the logged borehole (N2) which is intersected by this line. The dorerite exhibits high resistivities and high seismic velocities in the range ±2.5km/h or higher, which is usual for hard rocks. The loose and unconsolidated material (gravel and residium) closer to the river at line 1 will be easily excavatable,

Page 13 of 21

the dolerite will present some challenges as it is a hard competent rock. Interpretations of the results acquired with both the techniques on line 1 are presented in table 2.

Table 2

Layer	Model velocity (km/s)	Model Resistivity (Ohm.m)	Depth range (m)	Soil/rock type
Layer 1	0.3-0.9	(Layer 1) 32-300	0 – 6(@120- 180m)	clayey gravel and partially saturated residium
Layer 2	0.9-2.9	(Layer 2) 300- 44000	0-(>)40(@0- 90m)	Hard, competent dolerite

Boreholes:

NL29 is positioned at -30m from start of line 1.

NL26 is intersected at 75m on line 1.

N2 is intersected at 135m on line 1.

6.2 Line 2

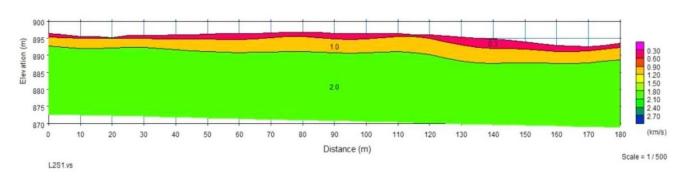


Figure 7. Modelled Seismic section along line 2.

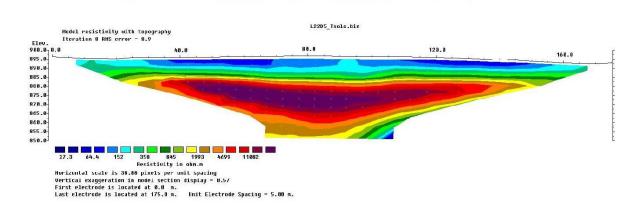


Figure 8. ERT section along line 2.

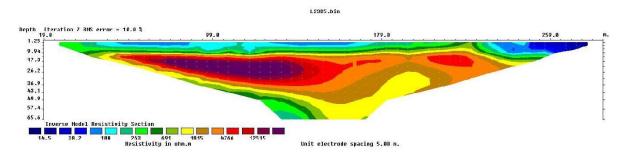


Figure 9. ERT section along line 2, with the extended portion. (270m)

Results discusions- Line 2

Along line 2, the overlying clayey gravel overburden varies in thickness depending on the close proximity of the measured position to the river. At the start of the line, the top material is thin, but along the remainder of the stretch it varies between 5-6m. The dolerite body is totally covered along this spread of the line and it stretches in depth thoughout the line. Line 2 follows the direction of the river and thus the overlying material is partially saturated, exhibiting low resistivity, while the dorerite exhibits high resistivities and high seismic velocities in the range ±2.5km/h or higher. The overlying loose material (gravel and residium) closer to the river along line 2 will be easily excavatable, the dolerite will present some challenges as it is a hard competent rock. Figure 9 shows the extended portion of line 2, with very little changes from the original spread. Interpretations of the results acquired with both the techniques on line 2 are presented in table 3.

Line 2 intersects borehole N2 at position 87m. The borehole log concurs with the results of the seismic and ERT techniques applied across it.

Page 15 of 21

Table 3

Layer	Model velocity (km/s)	Model Resistivity (Ohm.m)	Depth range (m)	Soil/rock type
Layer 1	0.1-0.6	90-300	0-6	Reddish Sandy clay, Colluvial
Layer 2	0.6-1.5	300-656	6-7	Gravells, dolerite residuals
Layer 3	1.5-3	656-70000	7-(>)40	Dolerite, hard and competent

6.3 Line 3

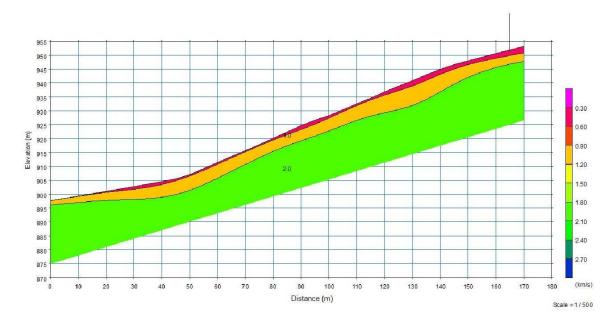


Figure 10. Modelled seismic setion along line 3.

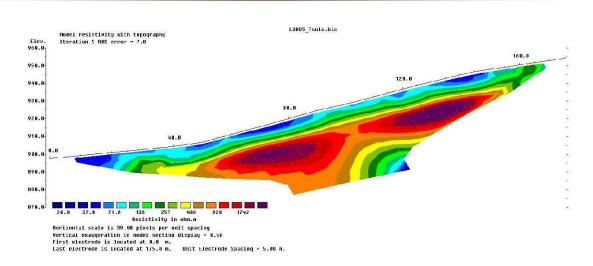


Figure 11. ERT section along line 3 (dipole-dipole)

Figure 12. An image showing the relative depth extend of the thick overlying material, some dark grey-brownish colluvium and highly metamorphosed sandtones in an exposure zone along the position of line 3.

Results Discusions-Line 3

Line 3 starts at the river and climbing on the steeply sided ridge oriented NW of the river. The ERT and seismic sections at this location depicts a fairly conductive layer of moist clayey sand or colluvium extending to depths ±1.5m covering most parts of this line. Figure 14 indicate clearly the depth of the residual material overlying the sandstones/dolerite along line 3. The dark coloured clayey sand at the top is thin and loose, followed by some subrounded to rounded thick coubles/boulders of weathered sandstone that extend to approximately 7m. The thickness of the overburden is almost constant thoughout the line, except for the area nearby the river, where the sandtone is nearly exposed. The competent and resistive sandstone bedrock is found below 7m along whole length of the line, extending deep. Interpretations of the results acquired with both the techniques on line 3 are presented in table 4.

Table 4

Layer	Model velocity (km/s)	Model Resistivity (Ohm.m)	Depth range (m)	Soil/rock type
Layer 1	0.1-0.9	20-37.8	0-1.5	Clay,sand
Layer 2	0.9-1.5	37.8-71.6	1.5-7	Weathered sandstone
Layer 3	2-3	71.8-3000	7-(>)40	Hard, competent sandstone

Line 3 intersects borehole N3 at around 135m.

Scale = 1 / 500

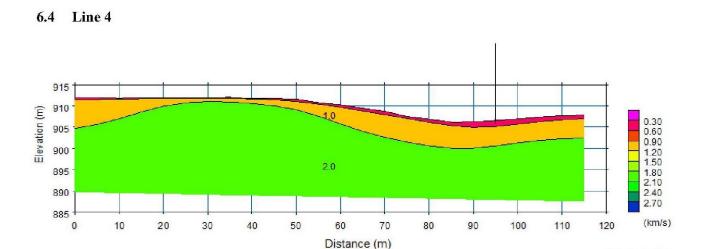


Figure 13. Modelled seismic section along line 4.

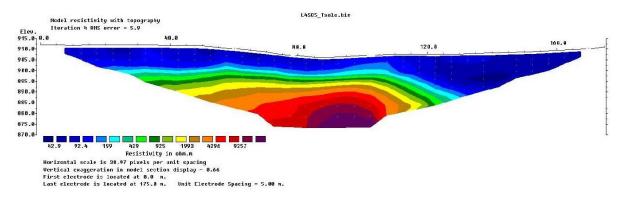


Figure 14.An ERT section along line 4.

Results discussions- Line 4

Line 4 lies parallel to line 2, but on other side of the river(west) trending SW-N. The results along this line shows a relatively thick overburden cover at the start of the line, thinning in the middle and becoming increasingly thick again towards the end of the spread. The sections shows presence of a lowly resistive layer covering the total length of the spread of probably clayey sand and loose residium. These layers are followed by a relatively hard and competent bedrock with high seismic velocities, ranging around 1.5km/s to ±2.7km/s. The highly resistive layer with corresponding high seismic velocity layer is interpreted to be either a fresh sandstone or an extension of the dolerite to

the west, which also extends deep . Interpretations of results acquired with both the techniques on line 4 are presented in table 5.

Table 5

Layer	Model velocity (km/s)	Model Resistivity (Ohm.m)	Depth range (m)	Soil/rock type
Layer 1	0.3-0.9	25-50	0-0.5	Reddish brown clay, Colluvium
Layer 2	0.9-1.5	50-400	0.5-6	Dolerite/sandstone residium
Layer 3	1.5-2.7	400-9000	6-(>)40	Dolerite/Sandstone

Line 4 intersects borehole N1 at 110m.

7 CONCLUSIONS AND RECOMMENDATIONS

Seismic refraction data and Electrical Resistivity tomography(ERT) surveys of a high signal to noise ratio was collected along the four(4) lines. The results of the seismic data interpretation shows a strong and precise correlationship between the thickness of the low velocity layer and the depth of weathering as observed in the existing boreholes at all the surveyed lines. The obtained low velocities and low resistivity results ranging between about 0.3km/s and 0.9km/s and low resisivities values may be interpreted as indicating presence of loose and unconsolidated material overying the bedrock at this locations. The highly resistive areas with corresponding high seimic velocities above 1.0km/s or higher, indicate hard competent rock, of either dolerite or fresh sandstone material. The Seismics and ERT results collected at this area correlates very well with the borehole data and thus can be used for correctly determining engineering properties for dam design purposes at this location.

8 REFERENCES

Fourie, S.J and Odgers, T.J., Spreadsheet Interpretation of Seismic Refraction Data, Computers and Geosciences, Vol 21, No. 2, pp.273-277, 1995. Elsevier Science Ltd.

Loke, M.H., Electrical imaging surveys for environmental and engineering studies. A practical guide to 2-D and 3-D surveys, 1999.

Johnson M.R., Visser J.N.J., Wickens H.de V., Christie A.D.M., Roberts D.L and Brandl G. Sedimentary rocks of the Karoo Supergroup in: Johnson, M.R., Anhaeusser, C.R. and Thomas, R.J. (Eds.) The Geology of South Africa, Geological Society of South Africa, Johannesburg / Council for Geoscience, Pretoria, 2006.

Sheriff Y.,1976. Refference seismic velocity range plot for rocks, in O.Yilmaz,. Seismic Data Analysis: Processing, Inversion and Interpretation of seismic data. Volume 1, 2008.

Iris Instruments: http://www.iris-instruments.com/

Seistronix website: http://www.seistronix.com/ras_g.htm

APPENDIX G

TRIAL PIT PROFILE DESCRIPTIONS

G1:

DAM TRIAL PITS

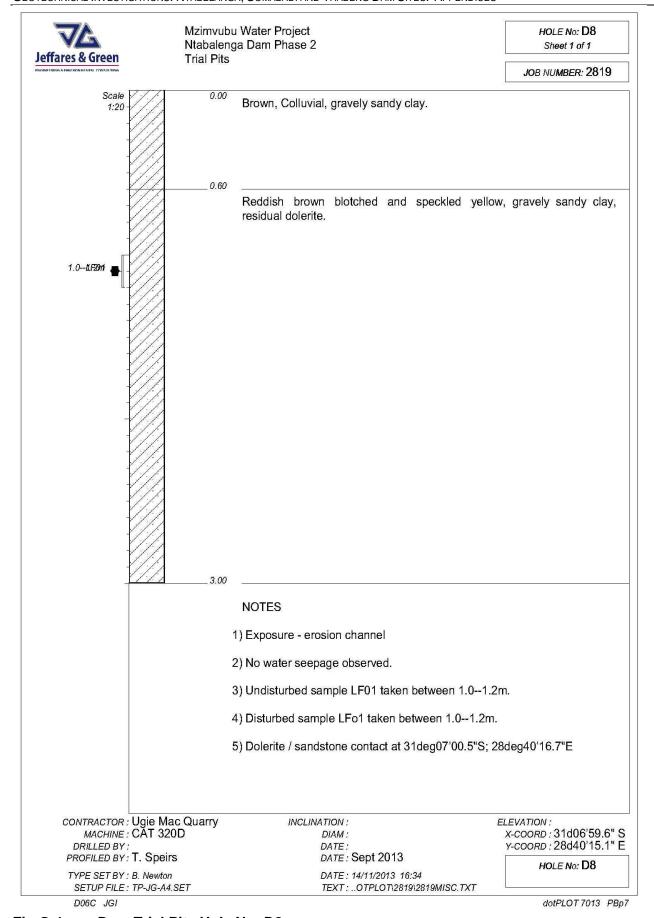


Fig G-1: Dam Trial Pits Hole No: D8

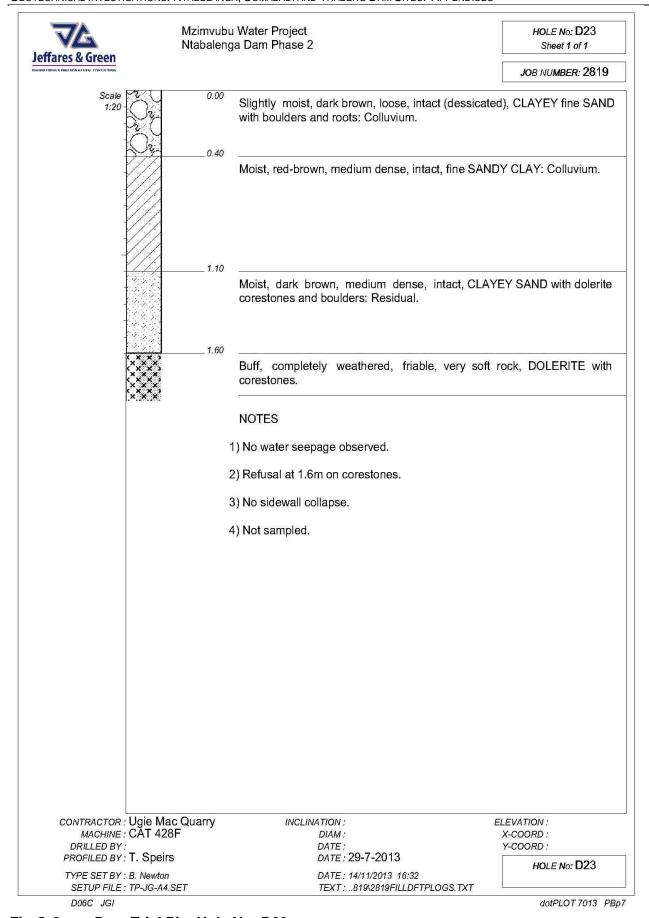


Fig G-2: Dam Trial Pits Hole No: D23

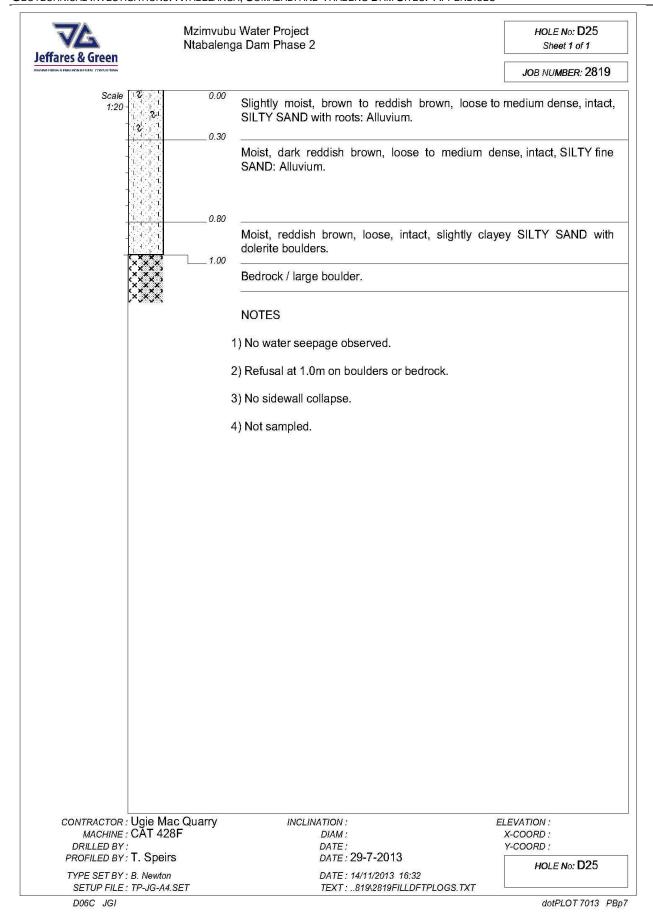


Fig G-3: Dam Trial Pits Hole No: D25

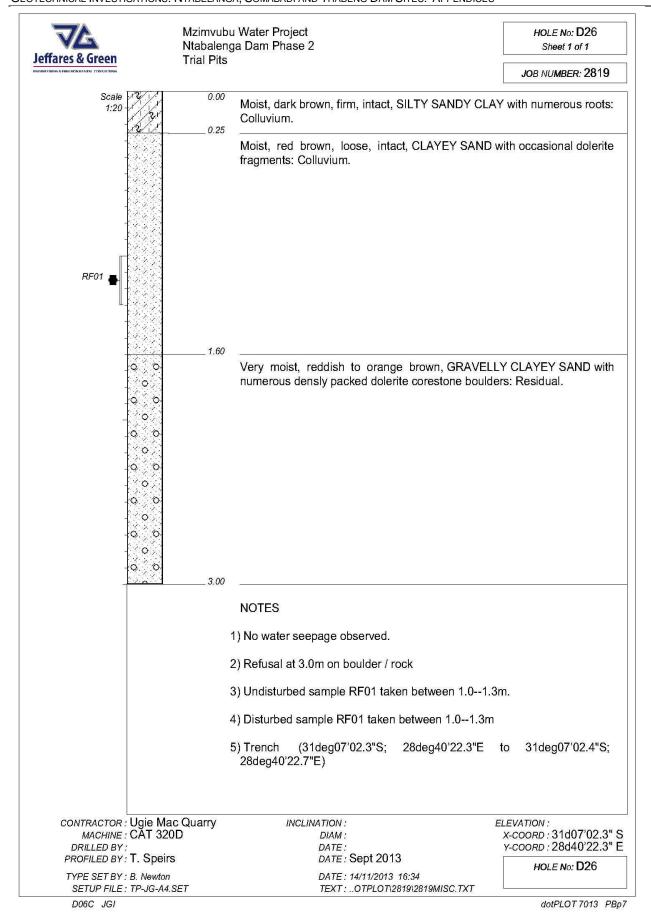


Fig G-4: Dam Trial Pits Hole No: D26

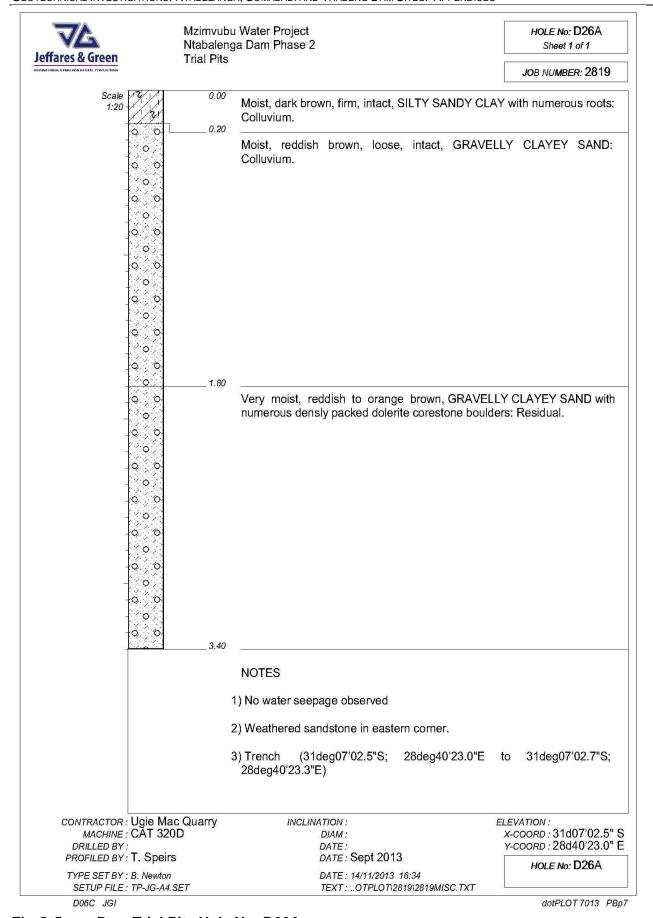


Fig G-5: Dam Trial Pits Hole No: D26A

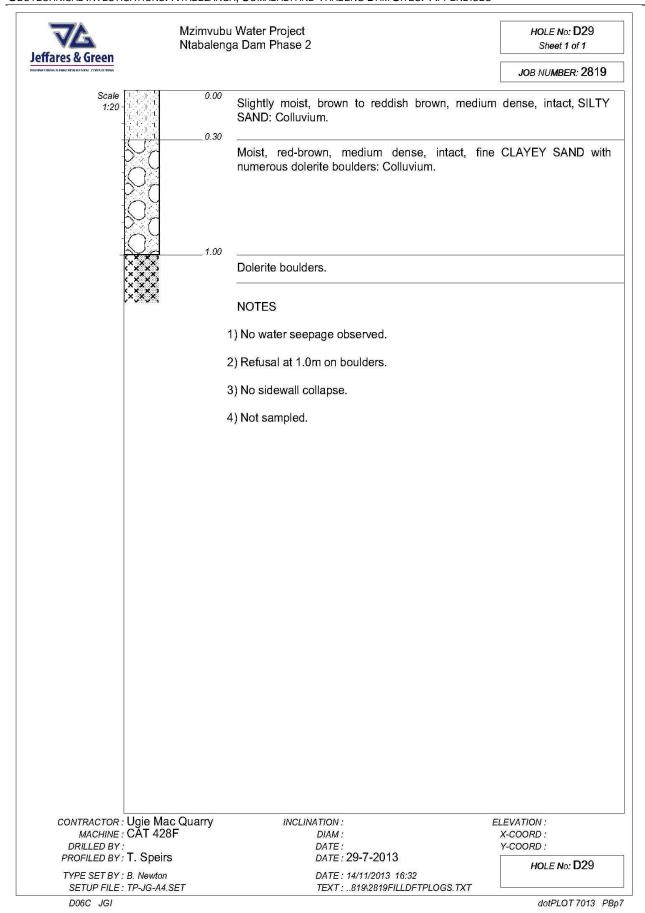


Fig G-6: Dam Trial Pits Hole No: D29

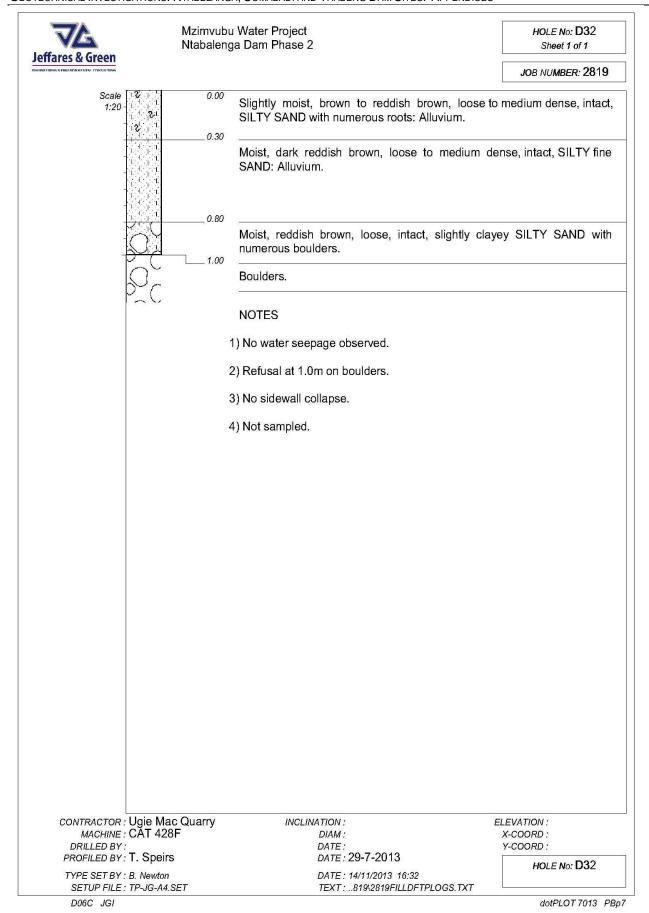


Fig G-7: Dam Trial Pits Hole No: D32

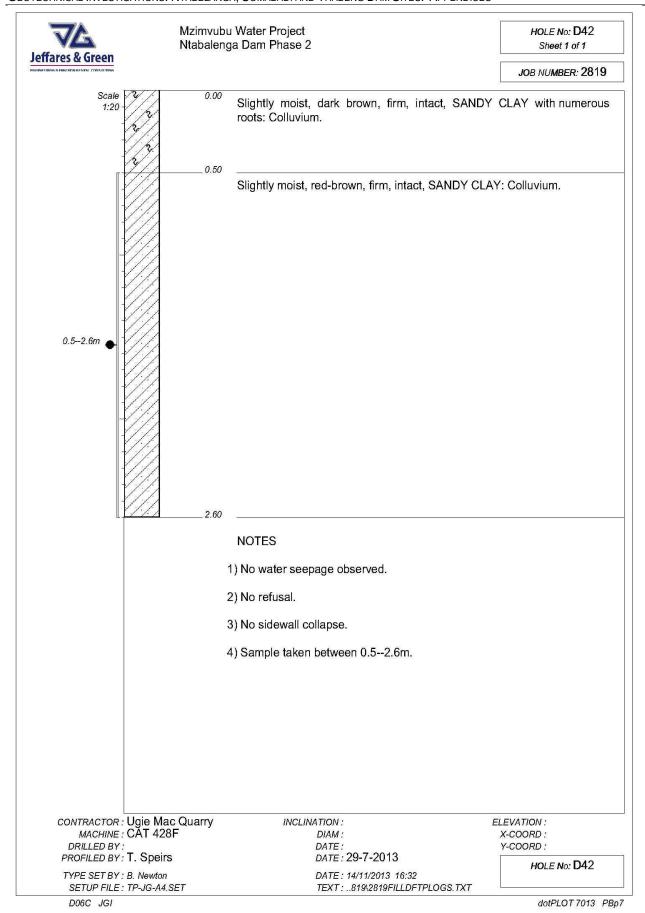


Fig G-8: Dam Trial Pits Hole No: D42

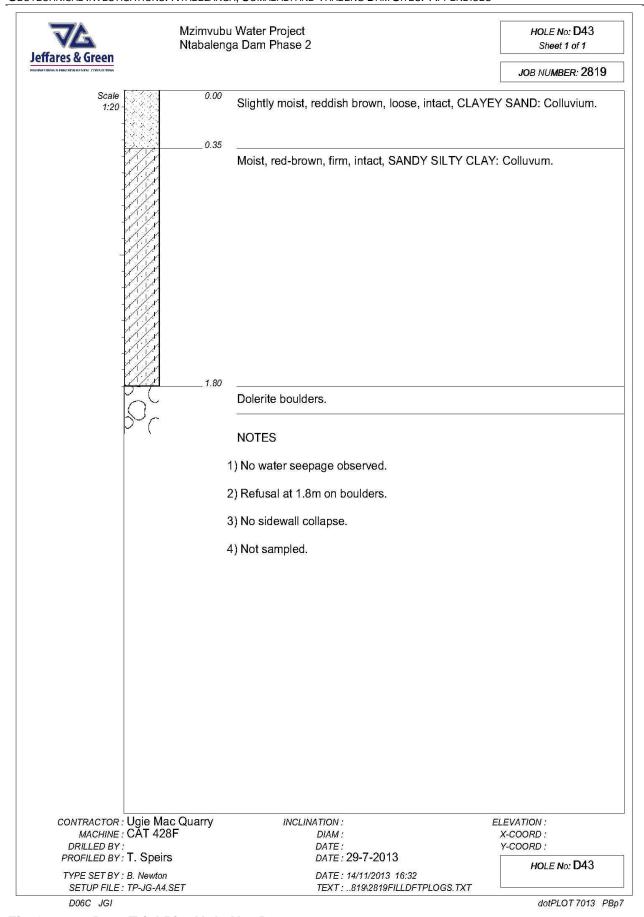


Fig G-9: Dam Trial Pits Hole No: D43

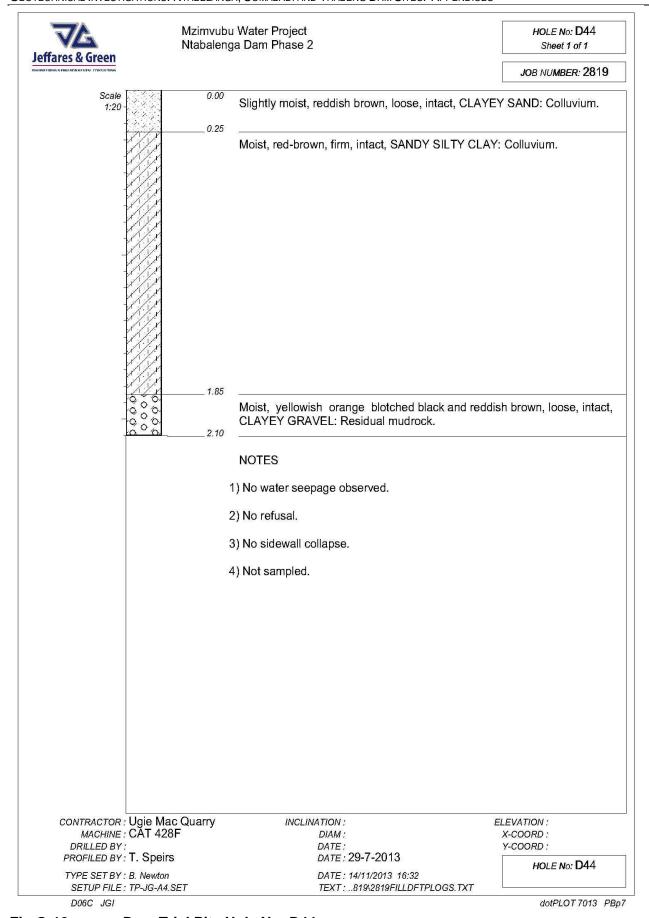


Fig G-10: Dam Trial Pits Hole No: D44

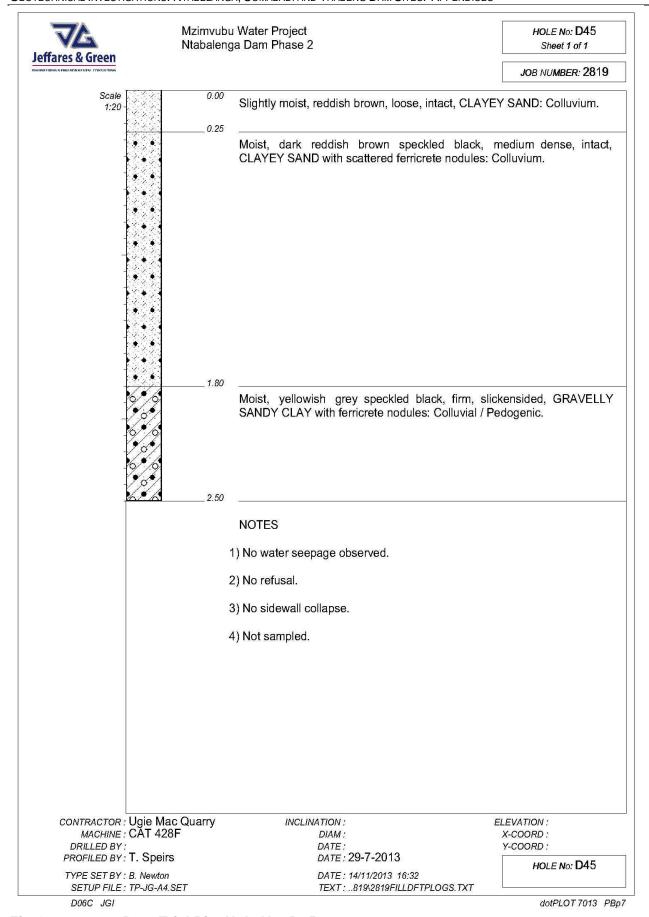


Fig G-11: Dam Trial Pits Hole No: D45

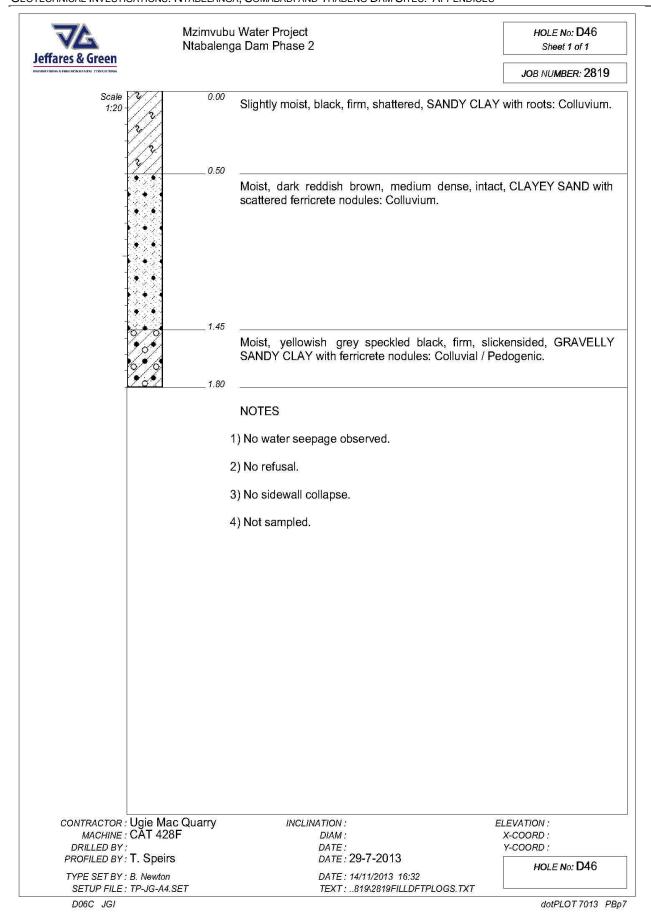


Fig G-12: Dam Trial Pits Hole No: D46

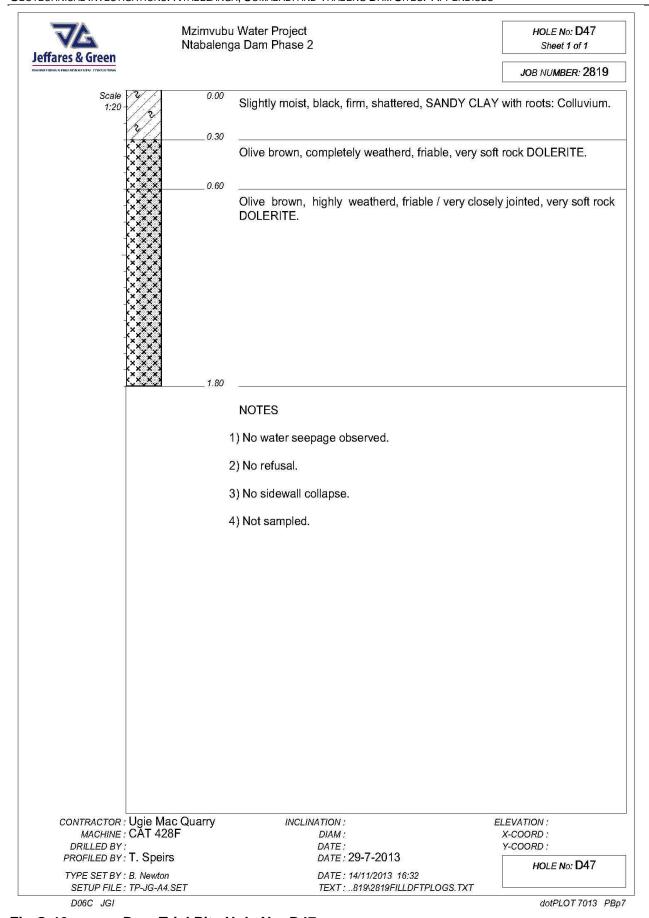


Fig G-13: Dam Trial Pits Hole No: D47

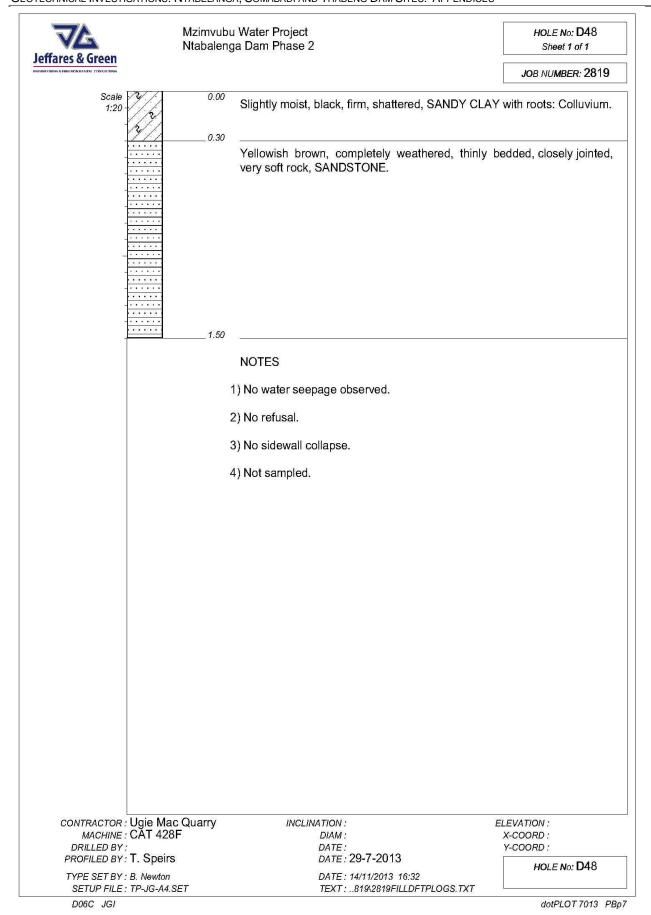


Fig G-14: Dam Trial Pits Hole No: D48

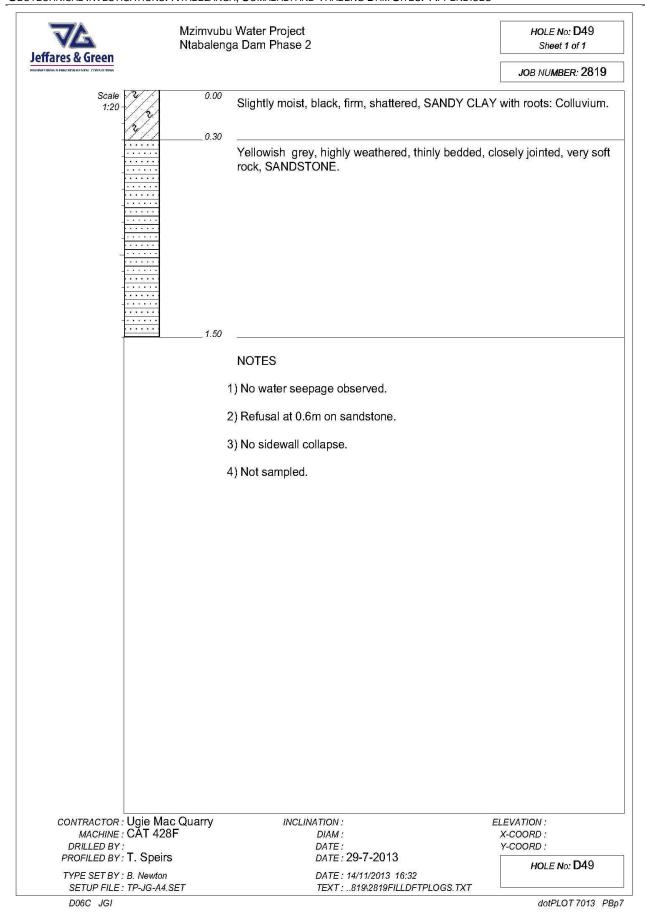


Fig G-15: Dam Trial Pits Hole No: D49

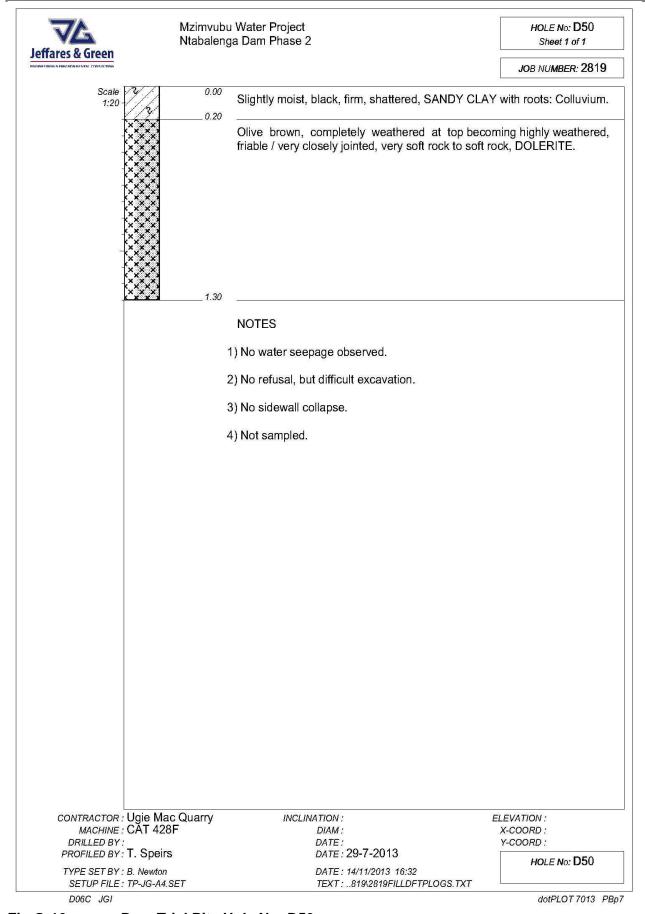


Fig G-16: Dam Trial Pits Hole No: D50

G2:

SPILLWAY TRIAL PITS

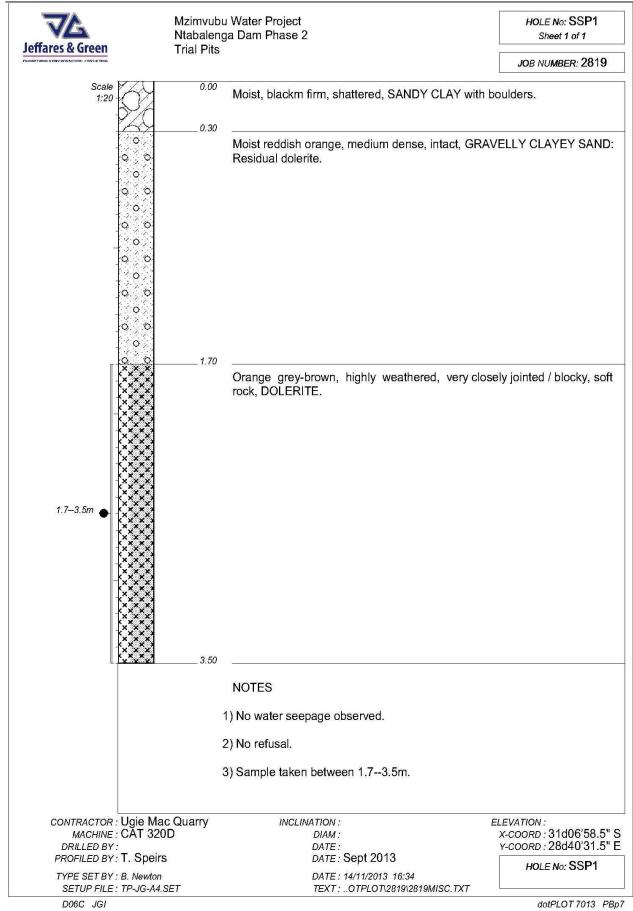


Fig G-17: Spillway Trial Pits Hole No: SP1

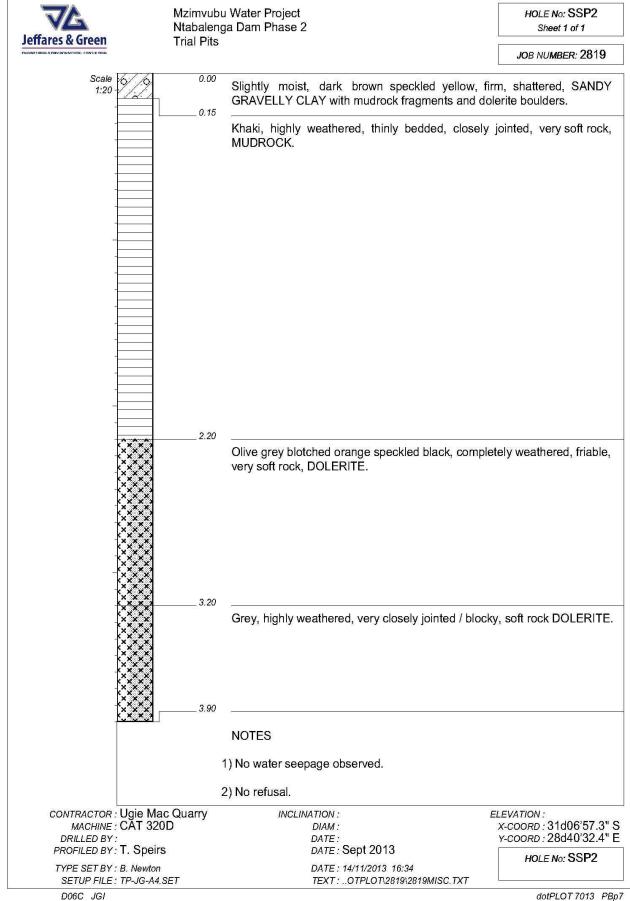


Fig G-18: Spillway Trial Pits Hole No: SP2

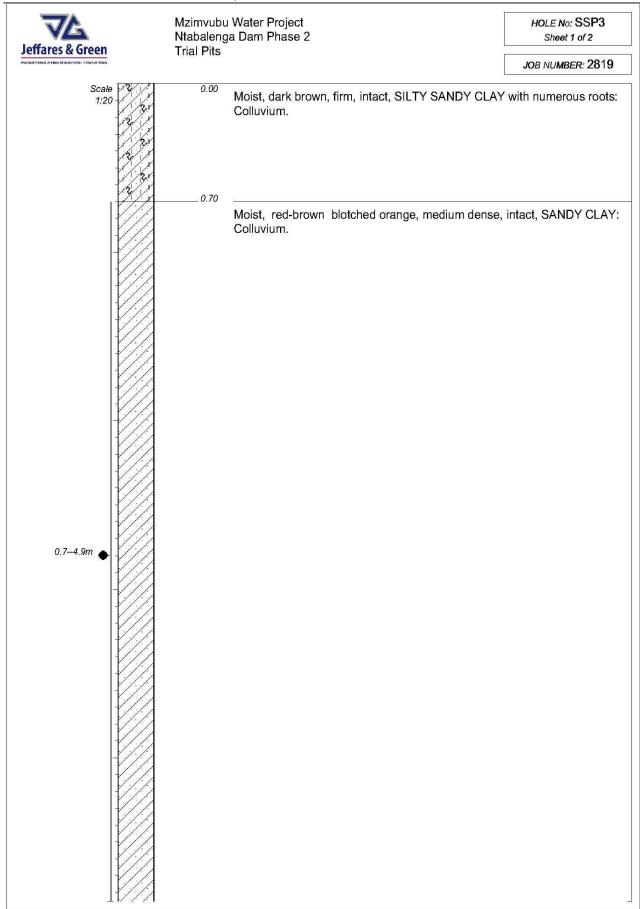


Fig G-19-1: Spillway Trial Pits Hole No: SP3

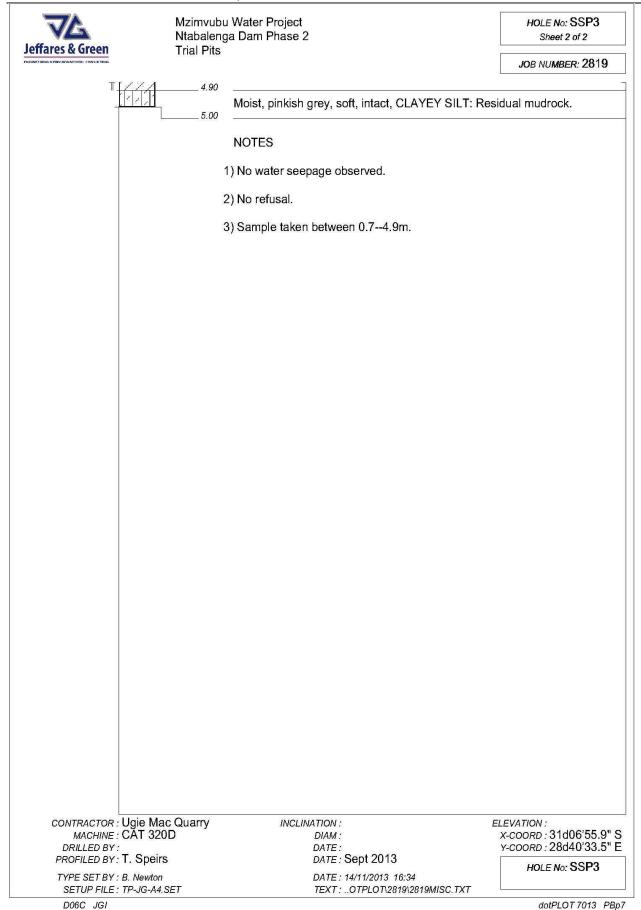


Fig G-19-2: Spillway Trial Pits Hole No: SP3

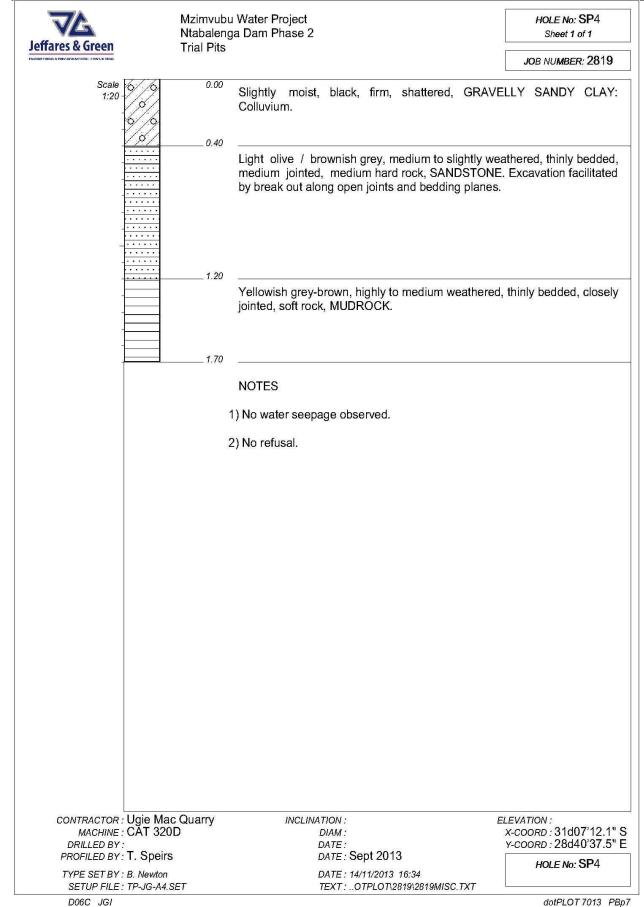


Fig G- 20: Spillway Trial Pits Hole No: SP4

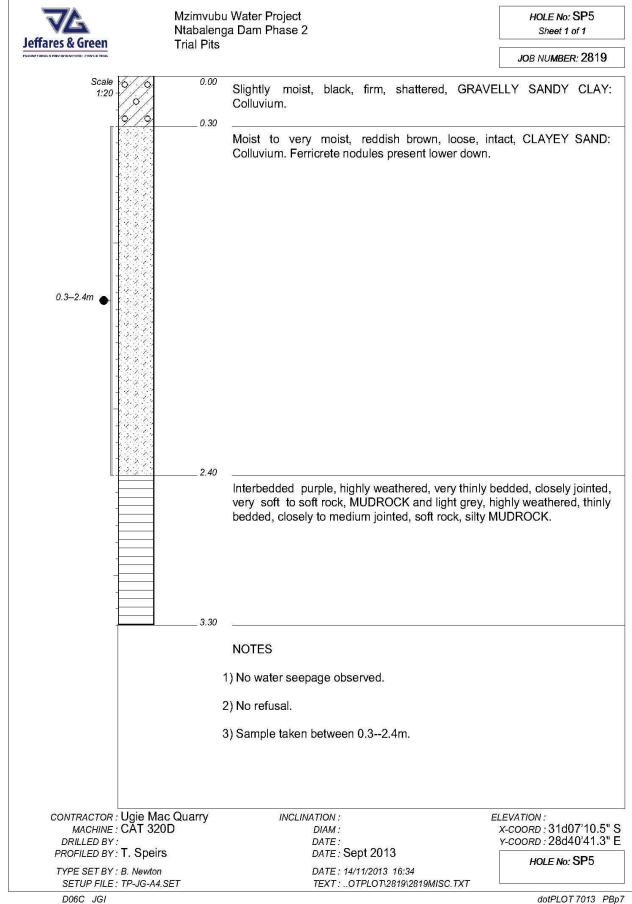


Fig G- 21: Spillway Trial Pits Hole No: SP5

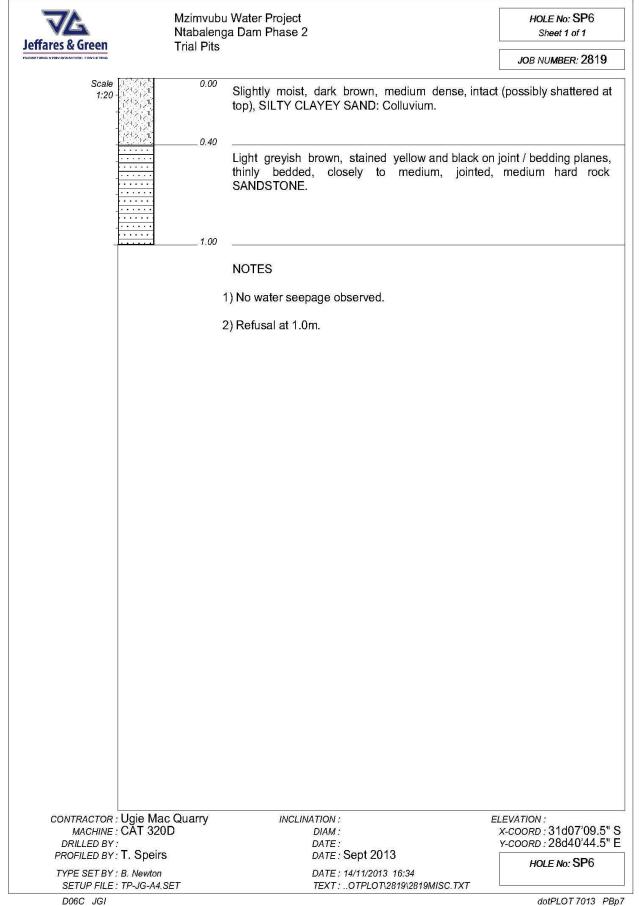


Fig G- 22: Spillway Trial Pits Hole No: SP6

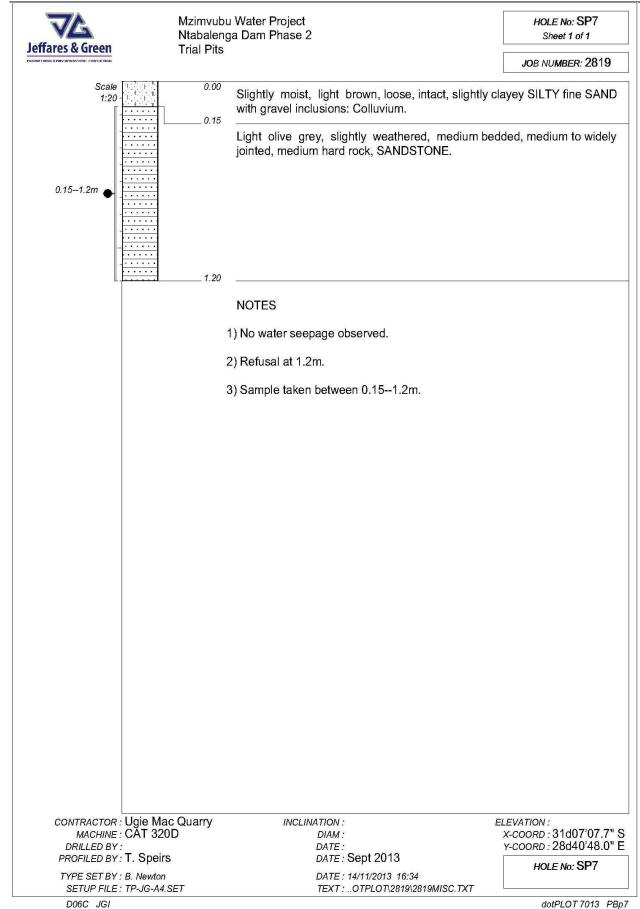


Fig G- 23: Spillway Trial Pits Hole No: SP7

G3:

SADDLE DAM TRIAL PITS

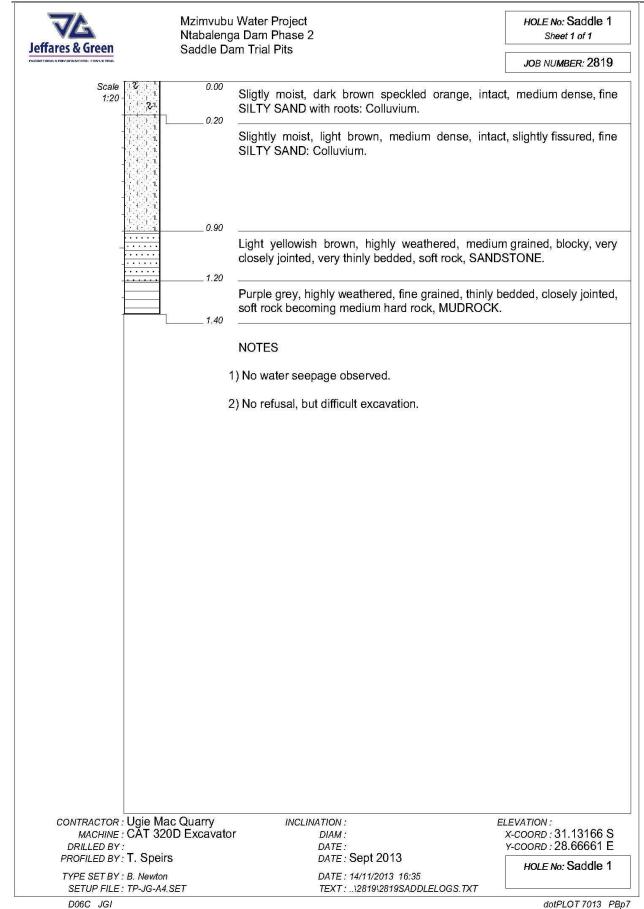


Fig G- 24: Saddle Dam Trial Pits Hole No: Saddle 1

G - 29

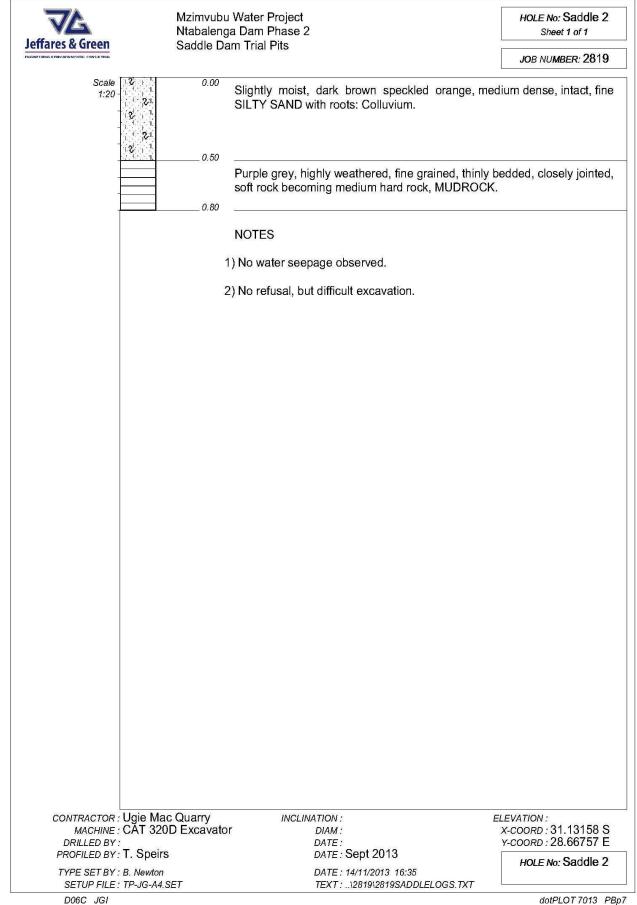


Fig G- 25: Saddle Dam Trial Pits Hole No: Saddle 2

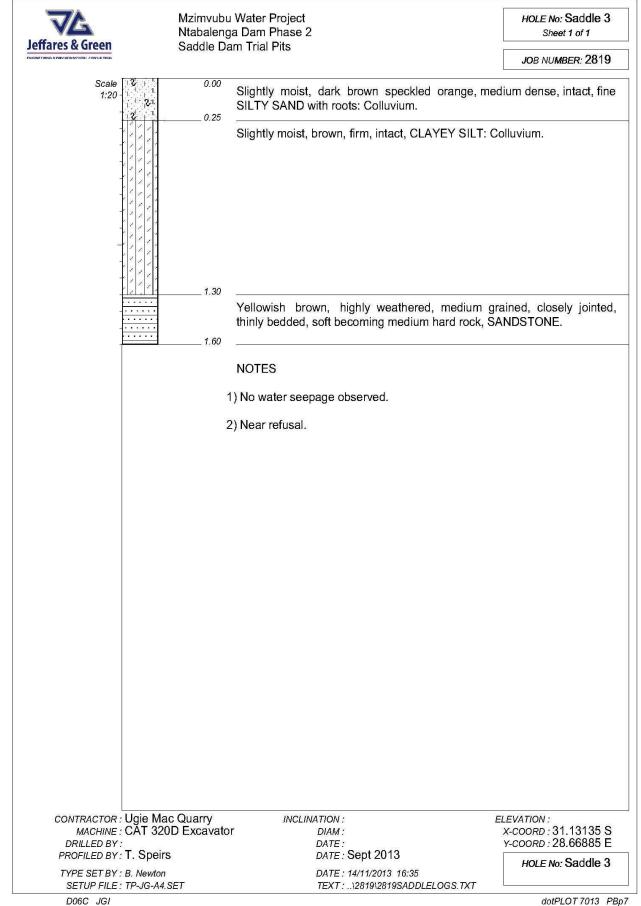


Fig G- 26: Saddle Dam Trial Pits Hole No: Saddle 3

G4:

CORE BORROW PIT TRIAL PITS

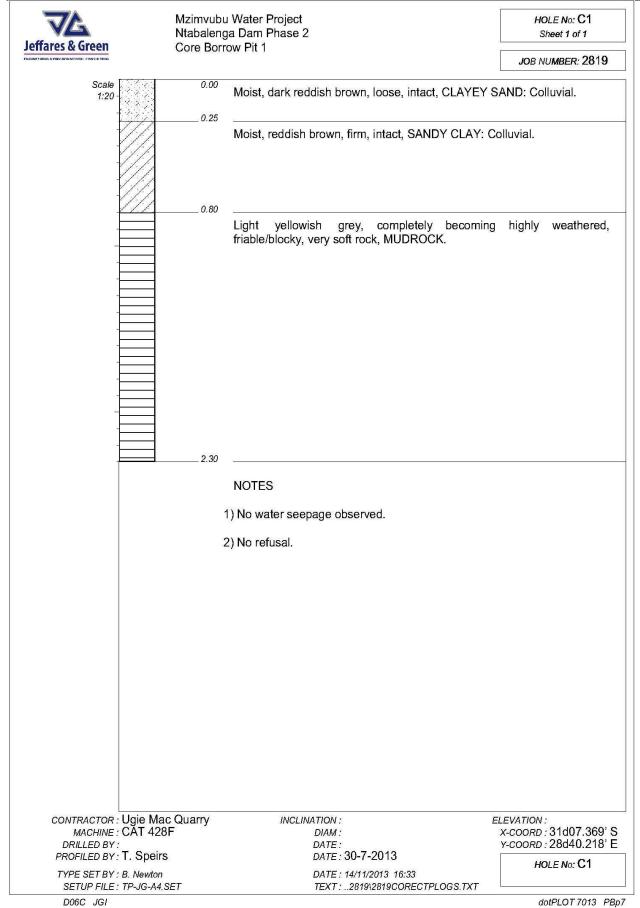


Fig G- 27-1: Core Borrow Pit 1 - Hole No: C1

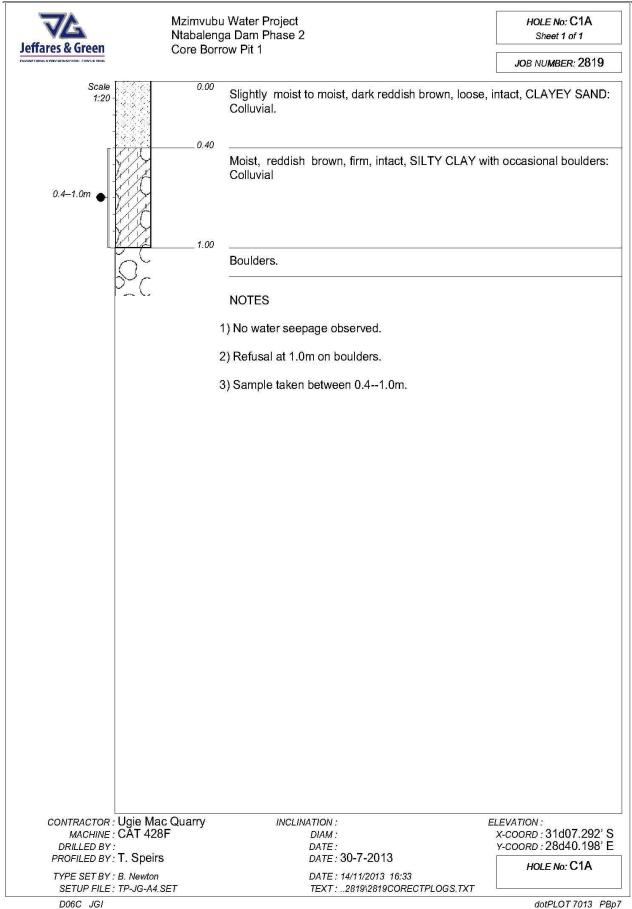


Fig G- 27-2: Core Borrow Pit 1 - Hole No: C1A

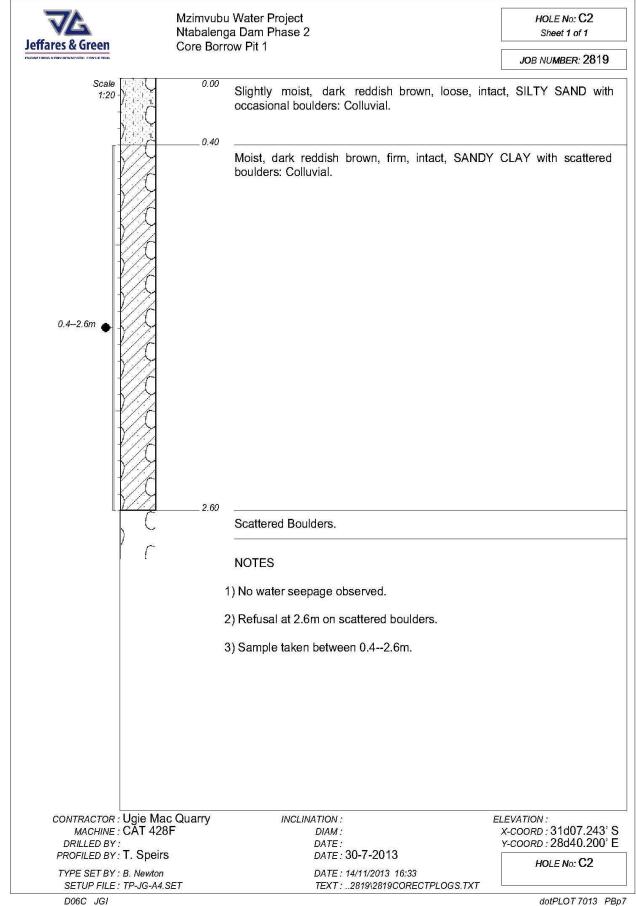


Fig G- 28-1: Core Borrow Pit 1 - Hole No: C2

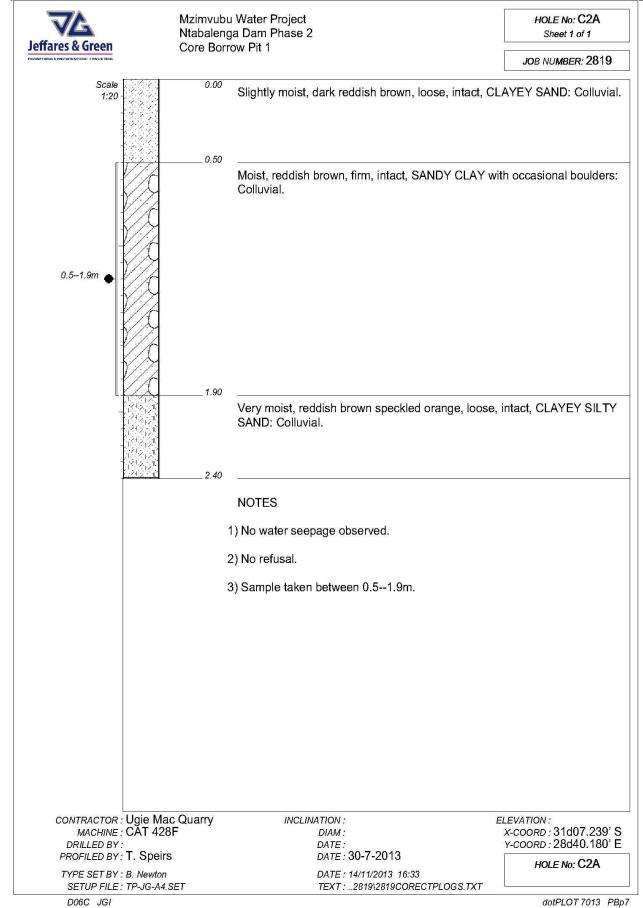


Fig G- 28-2: Core Borrow Pit 1 - Hole No: C2A

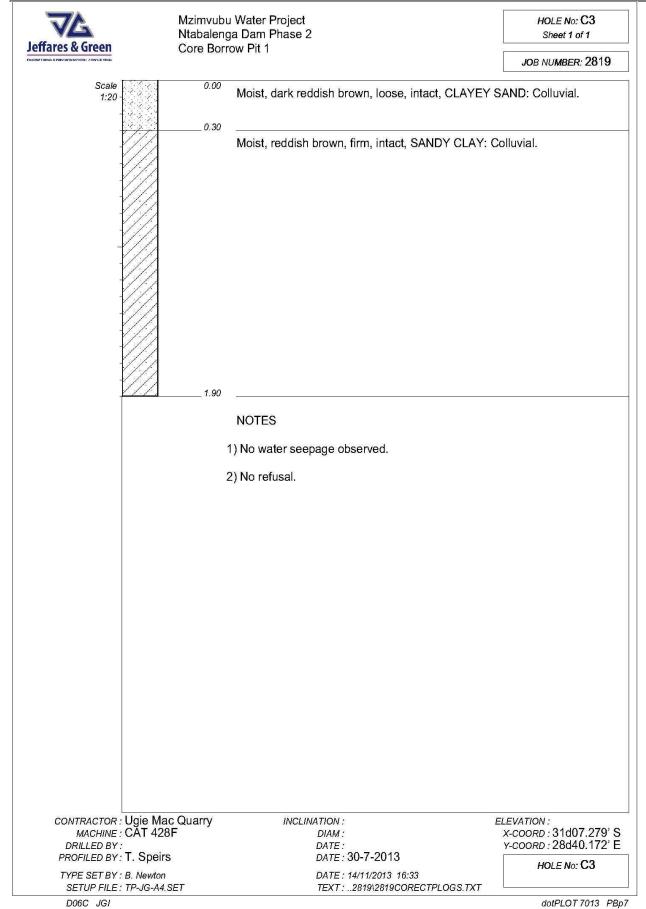


Fig G- 29: Core Borrow Pit 1 - Hole No: C3

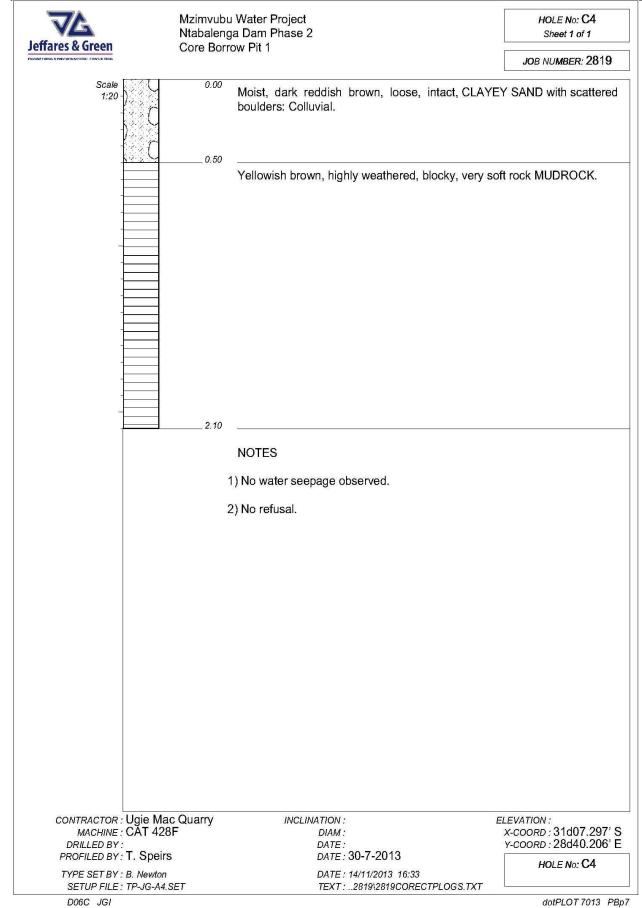


Fig G- 30-1: Core Borrow Pit 1 - Hole No: C4

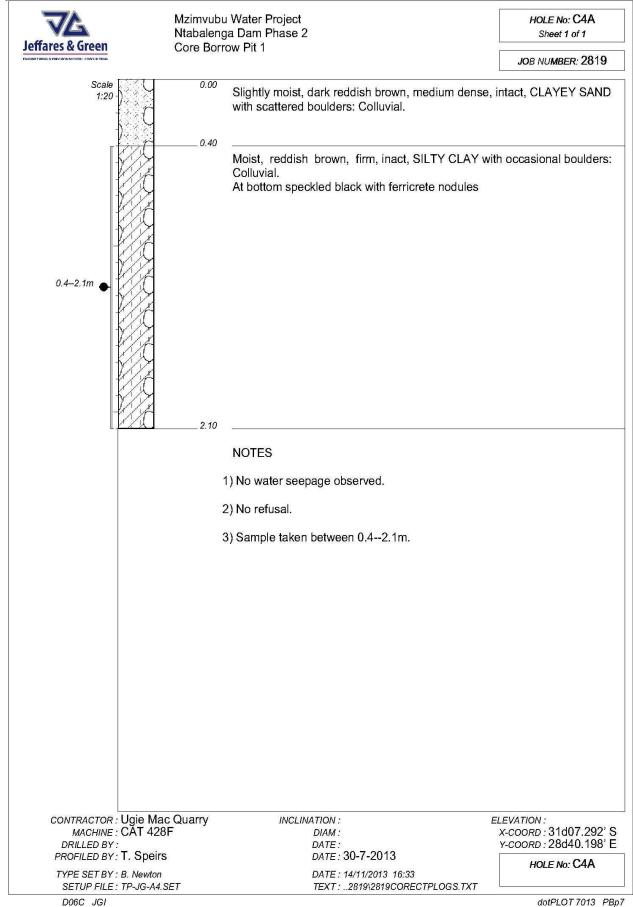


Fig G- 30-2: Core Borrow Pit 1 - Hole No: C4A

G - 39

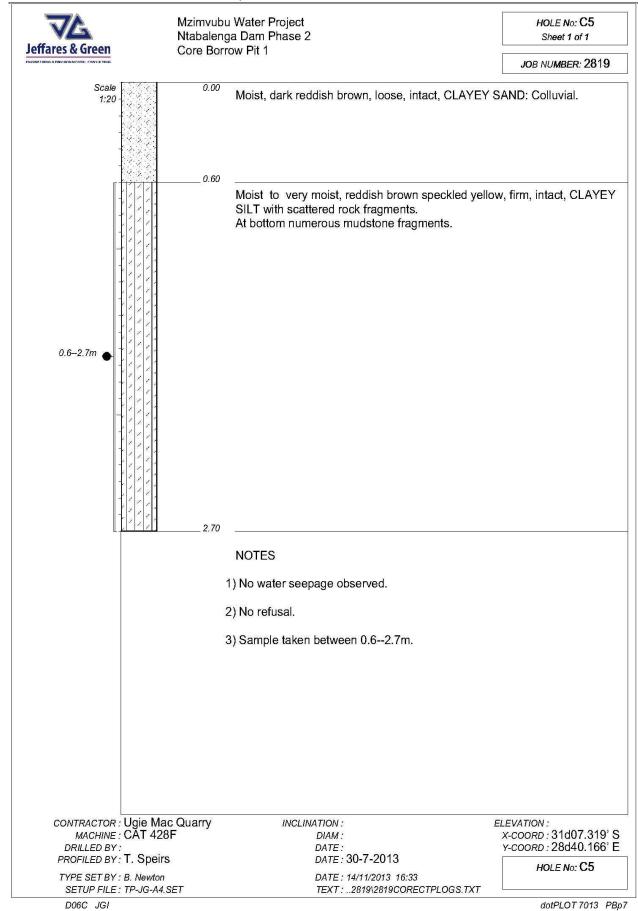


Fig G- 31: Core Borrow Pit 1 - Hole No: C5

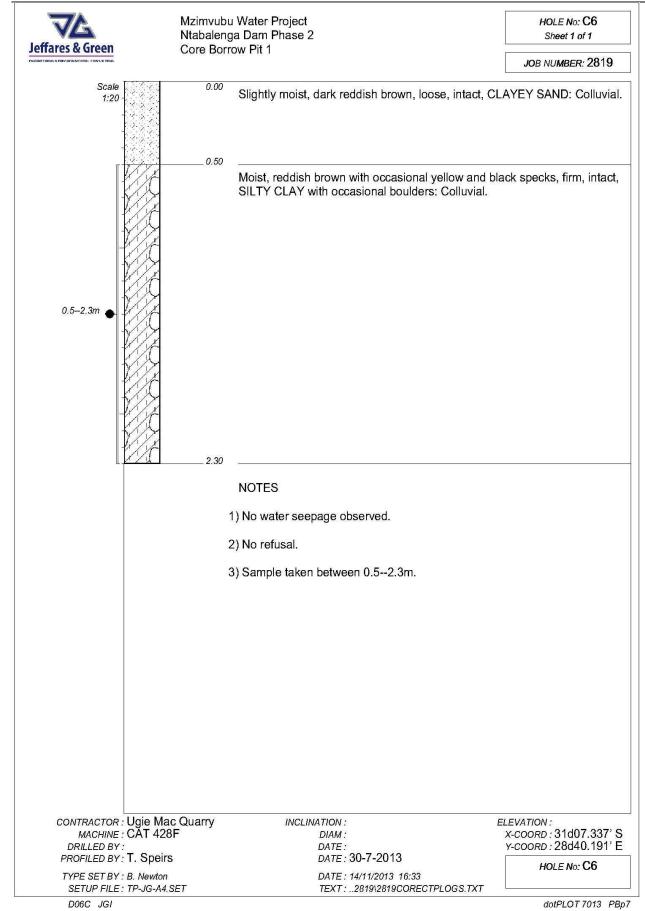


Fig G- 32: Core Borrow Pit 1 - Hole No: C6

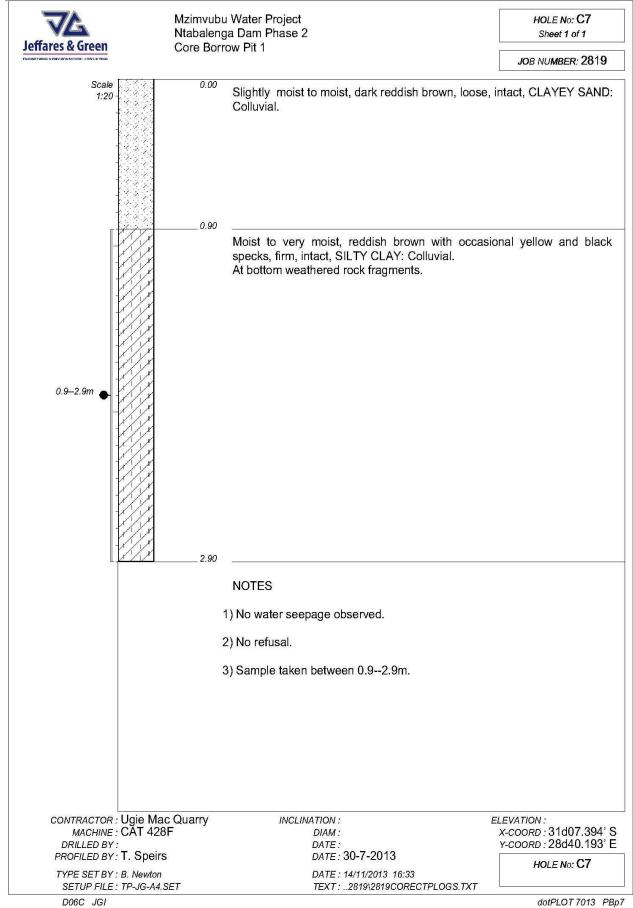


Fig G- 33: Core Borrow Pit 1 - Hole No: C7

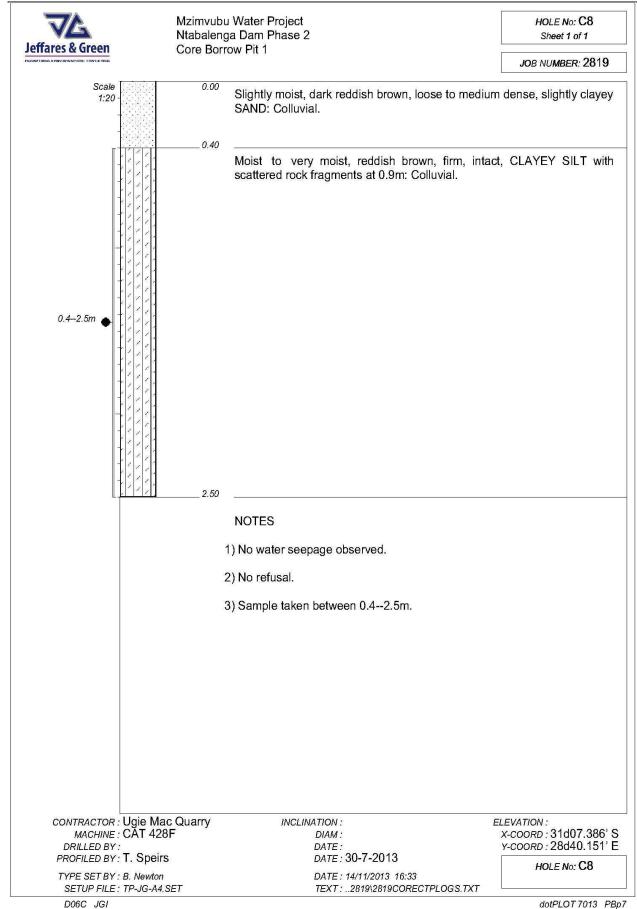


Fig G- 34: Core Borrow Pit 1 - Hole No: C8

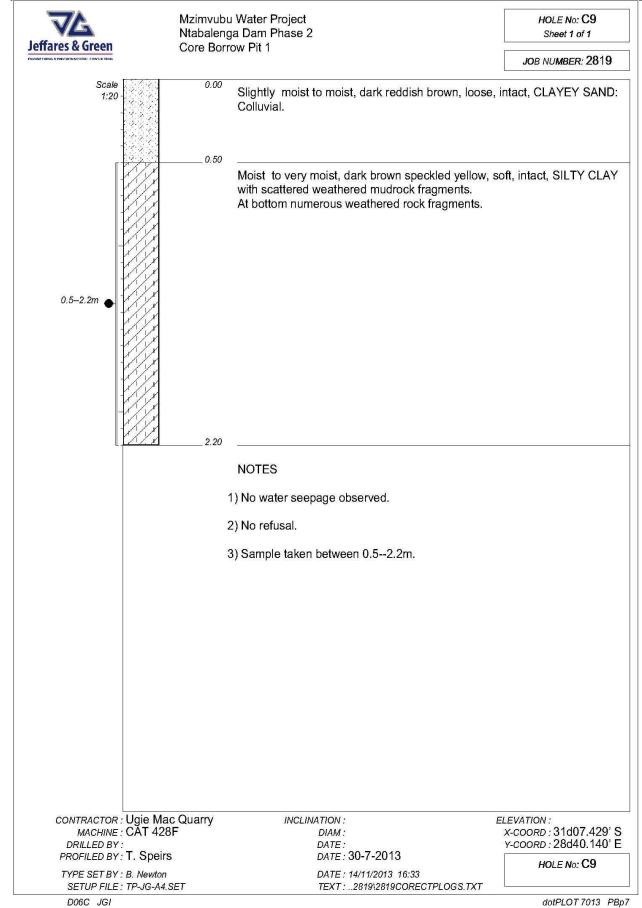


Fig G- 35: Core Borrow Pit 1 - Hole No: C9

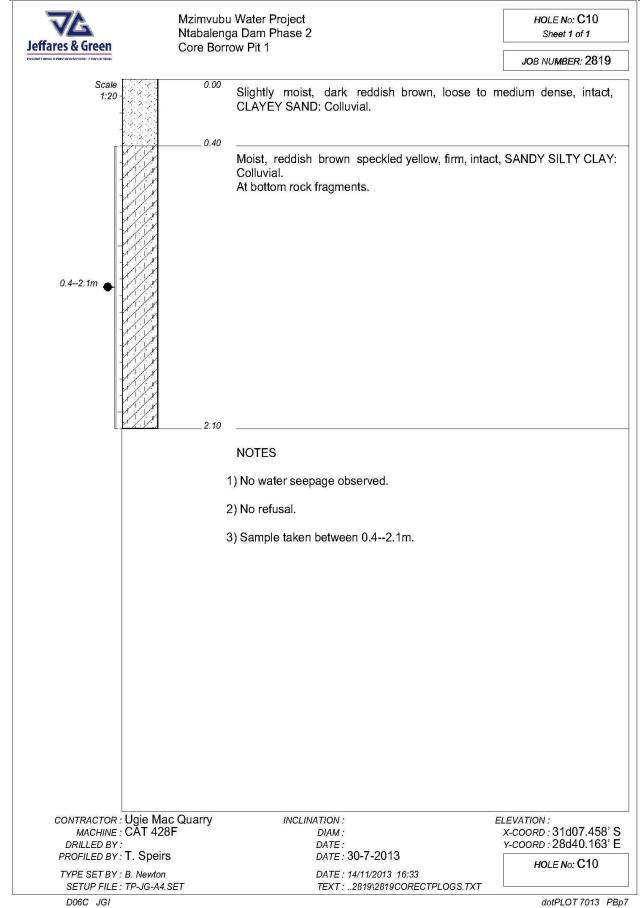


Fig G- 36: Core Borrow Pit 1 - Hole No: C10

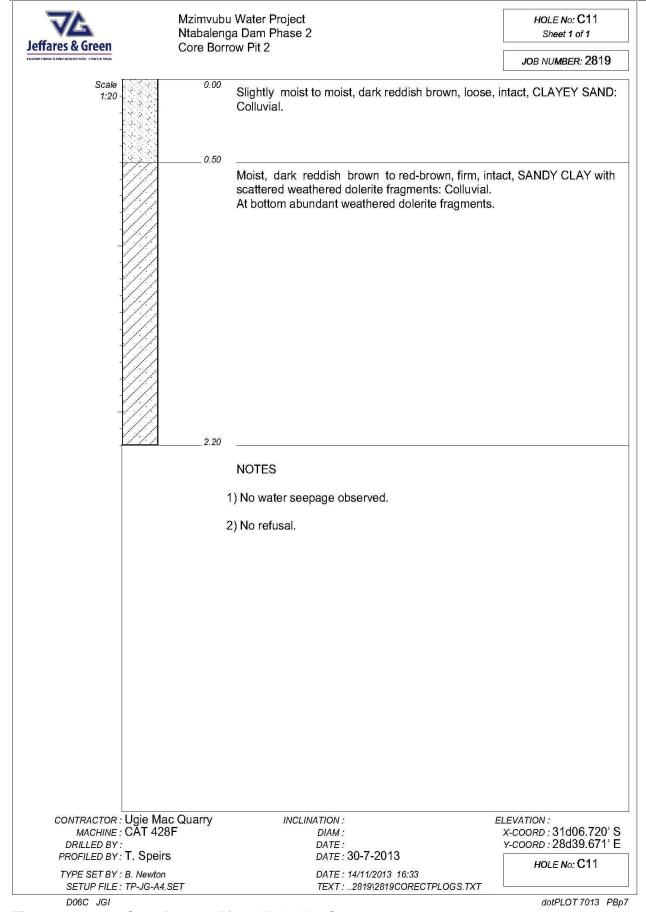


Fig G- 37: Core Borrow Pit 2 - Hole No: C11

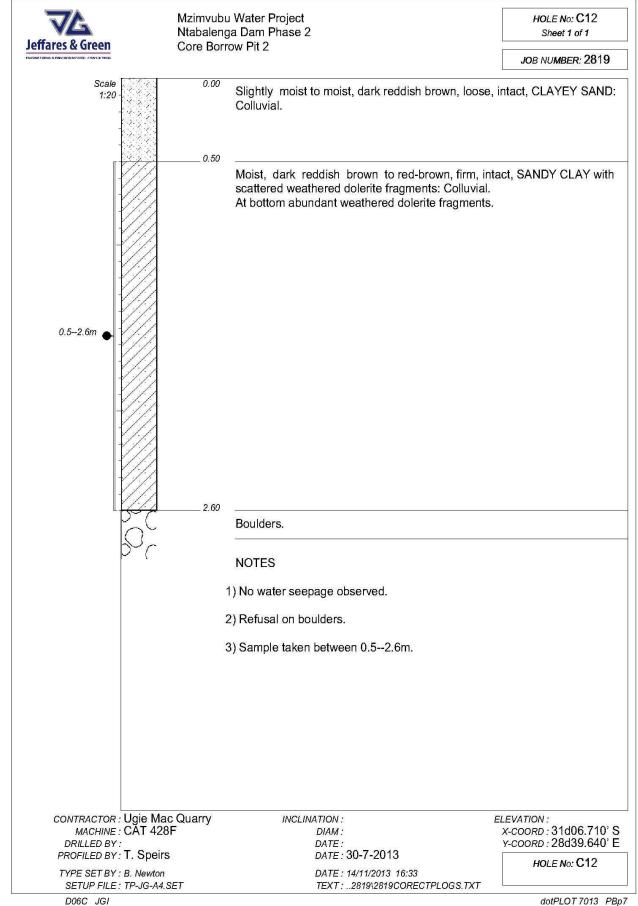


Fig G- 37: Core Borrow Pit 2 - Hole No: C12

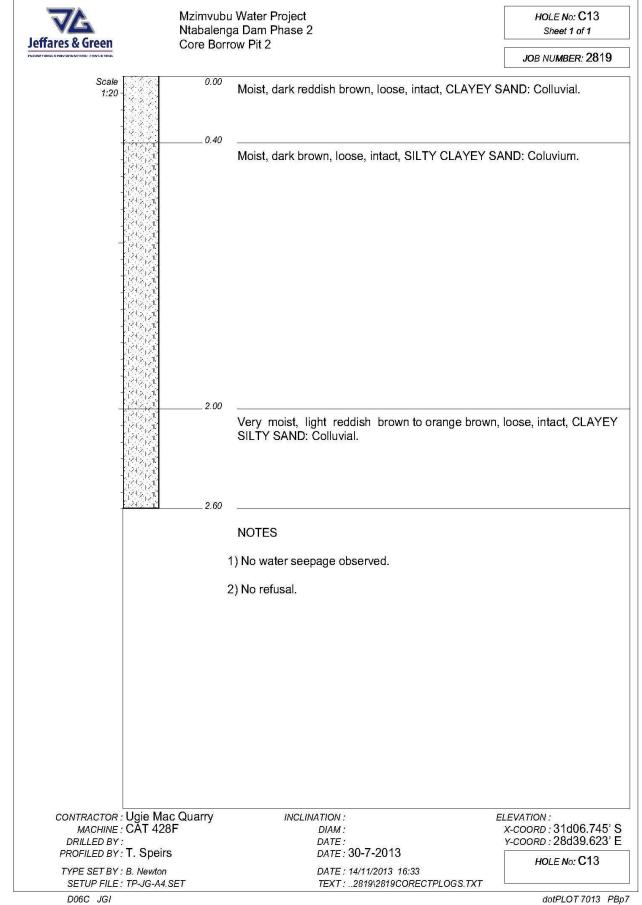


Fig G- 38: Core Borrow Pit 2 - Hole No: C13

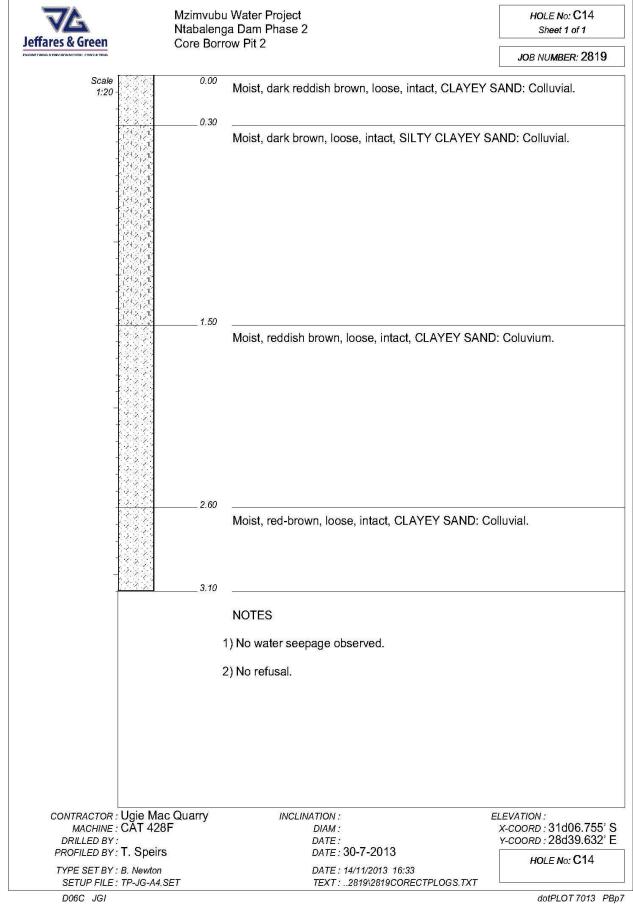


Fig G- 39: Core Borrow Pit 2 - Hole No: C14

00 201 1010 1 Bp1

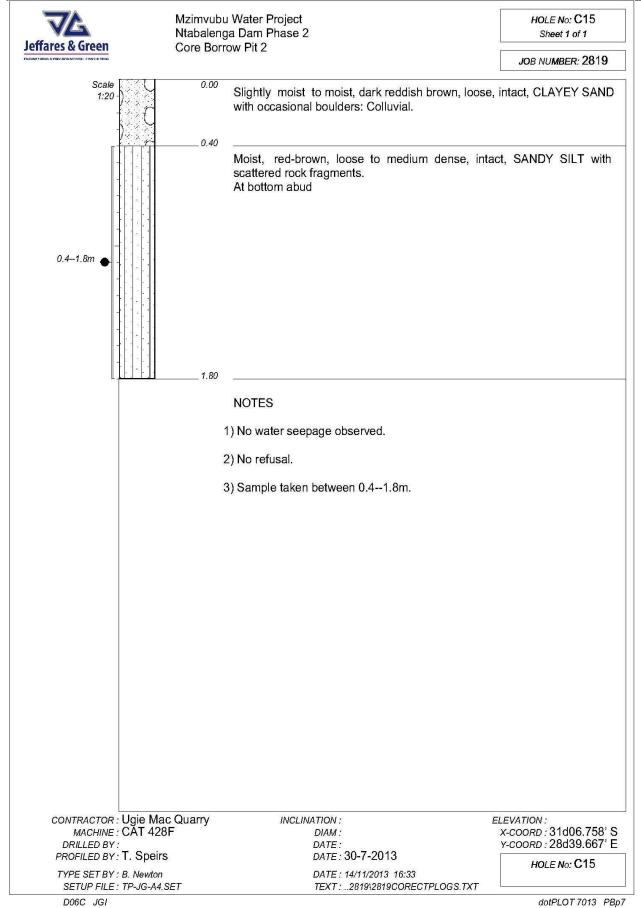


Fig G- 40: Core Borrow Pit 2 - Hole No: C15

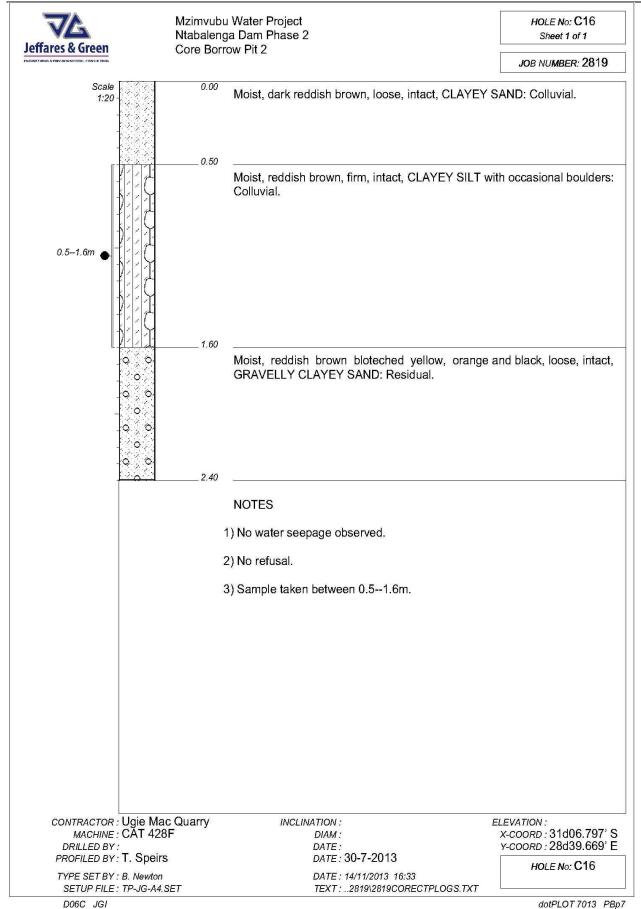


Fig G- 41: Core Borrow Pit 2 - Hole No: C16

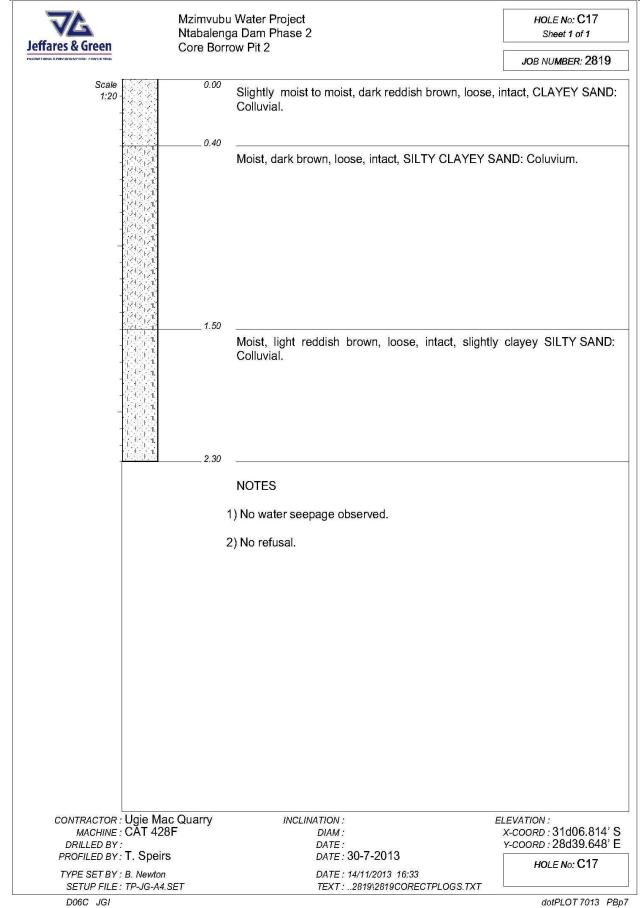


Fig G- 42: Core Borrow Pit 2 - Hole No: C17

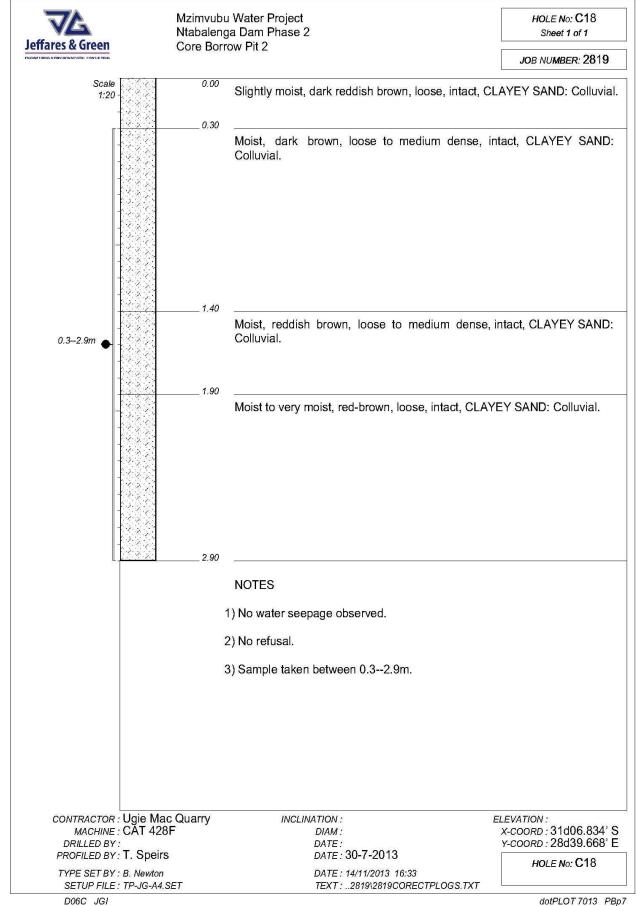


Fig G- 43: Core Borrow Pit 2 - Hole No: C18

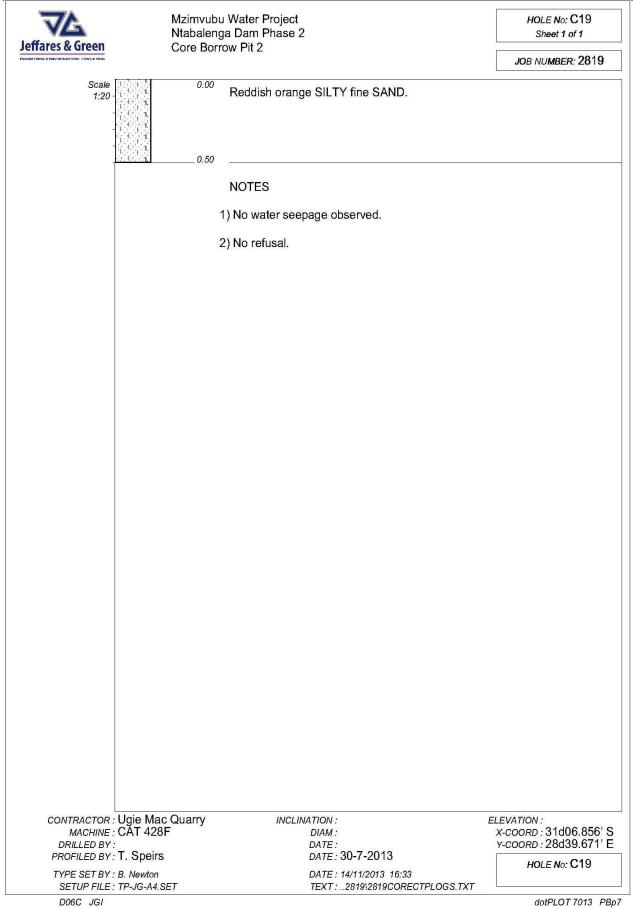


Fig G- 44: Core Borrow Pit 2 - Hole No: C19

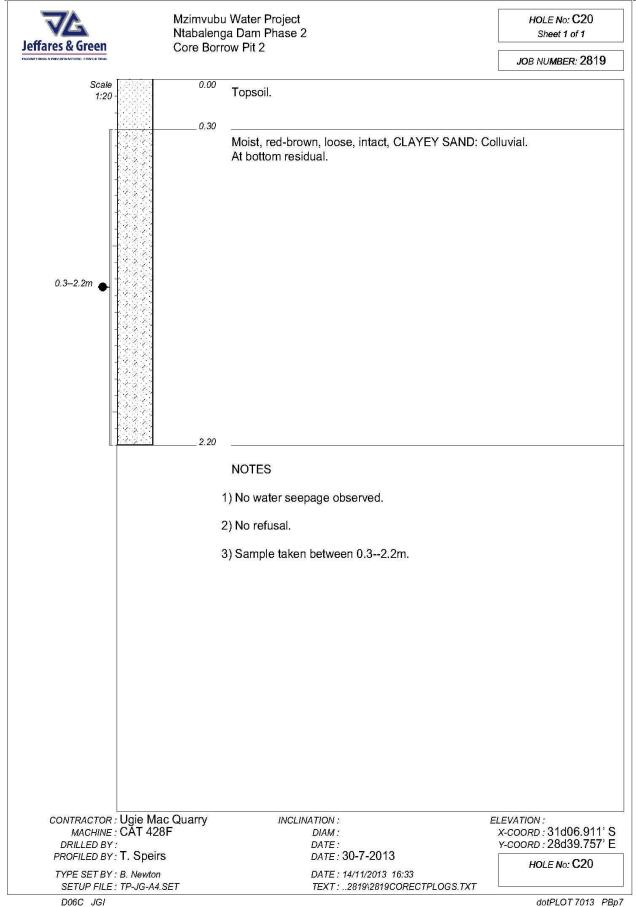


Fig G- 45: Core Borrow Pit 2 - Hole No: C20

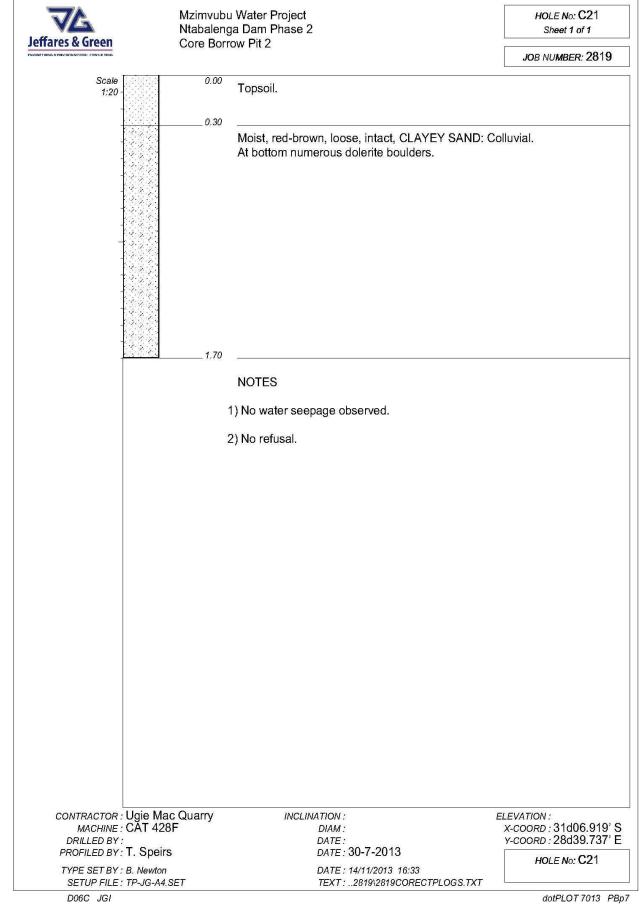


Fig G- 46: Core Borrow Pit 2 - Hole No: C21

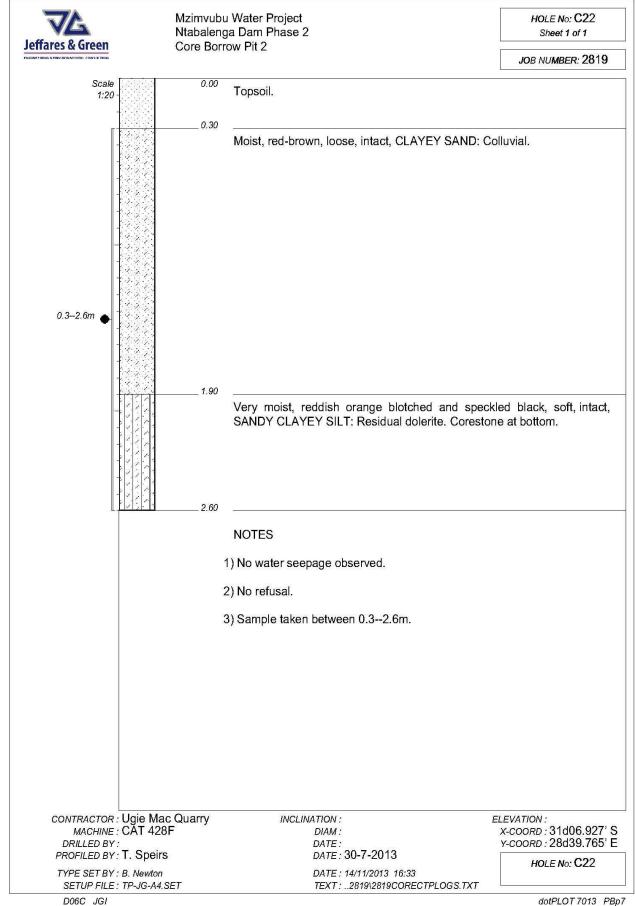


Fig G- 47: Core Borrow Pit 2 - Hole No: C22

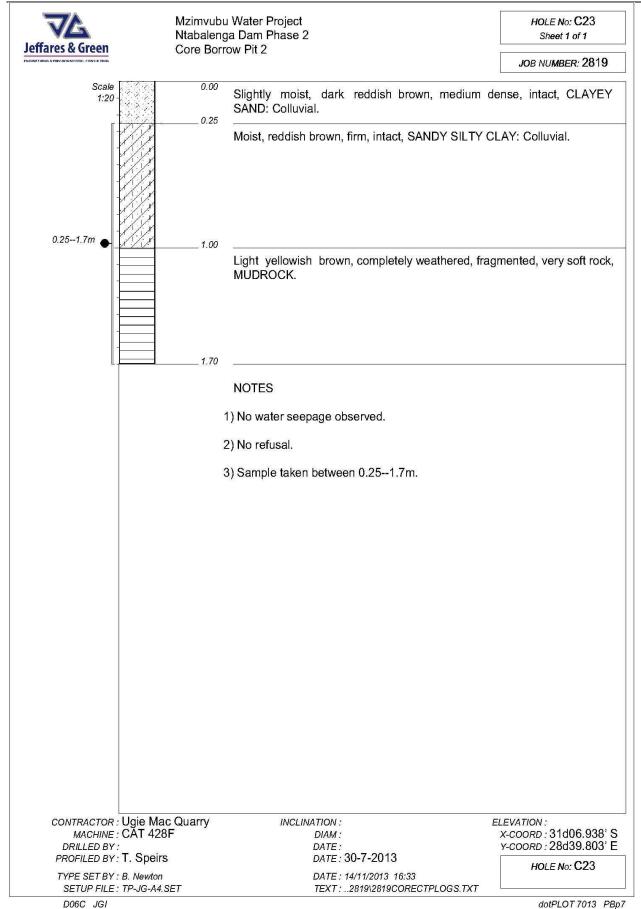


Fig G- 48: Core Borrow Pit 2 - Hole No: C23

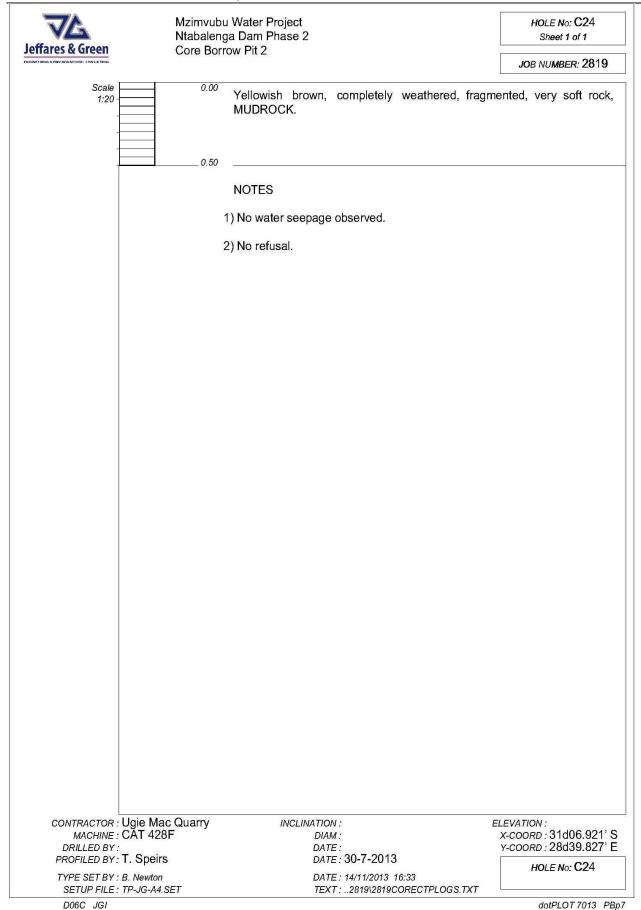


Fig G- 49: Core Borrow Pit 2 - Hole No: C24

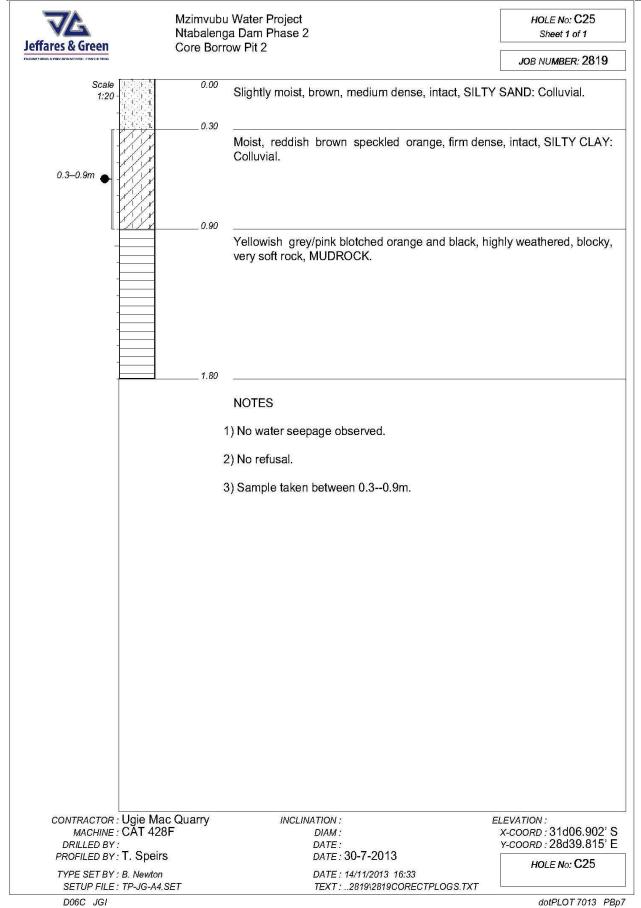


Fig G- 50: Core Borrow Pit 2 - Hole No: C25

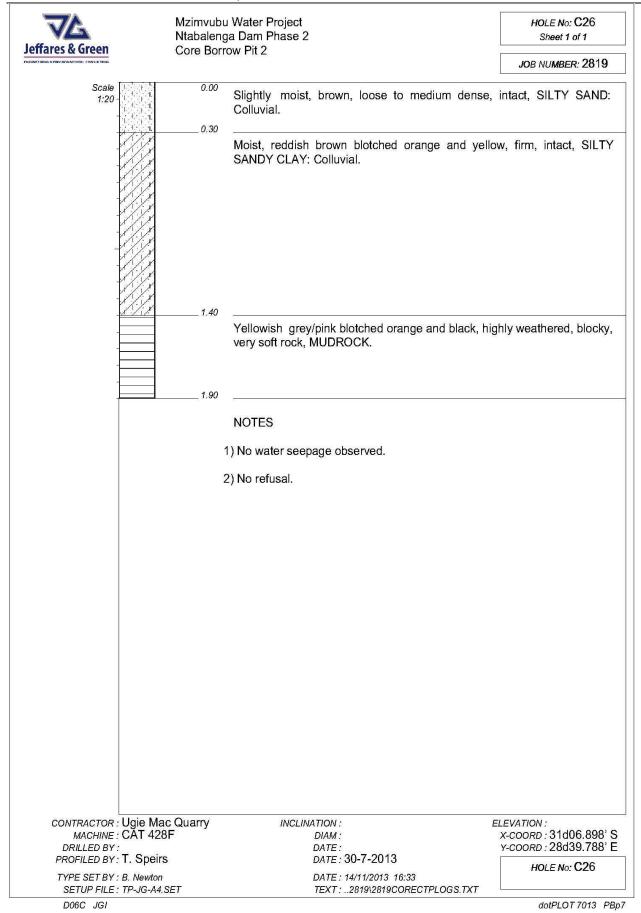


Fig G- 51: Core Borrow Pit 2 - Hole No: C26

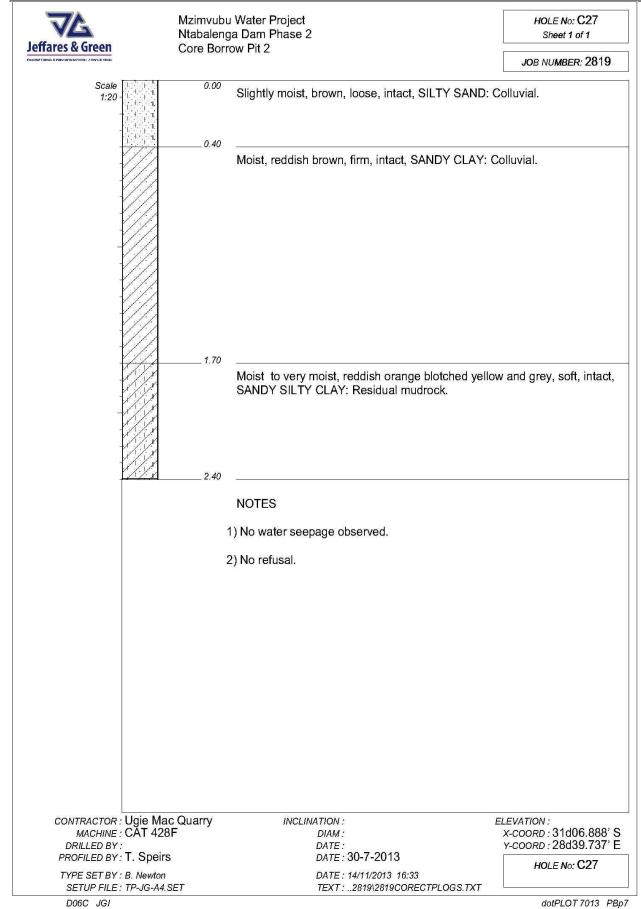


Fig G- 52: Core Borrow Pit 2 - Hole No: C27

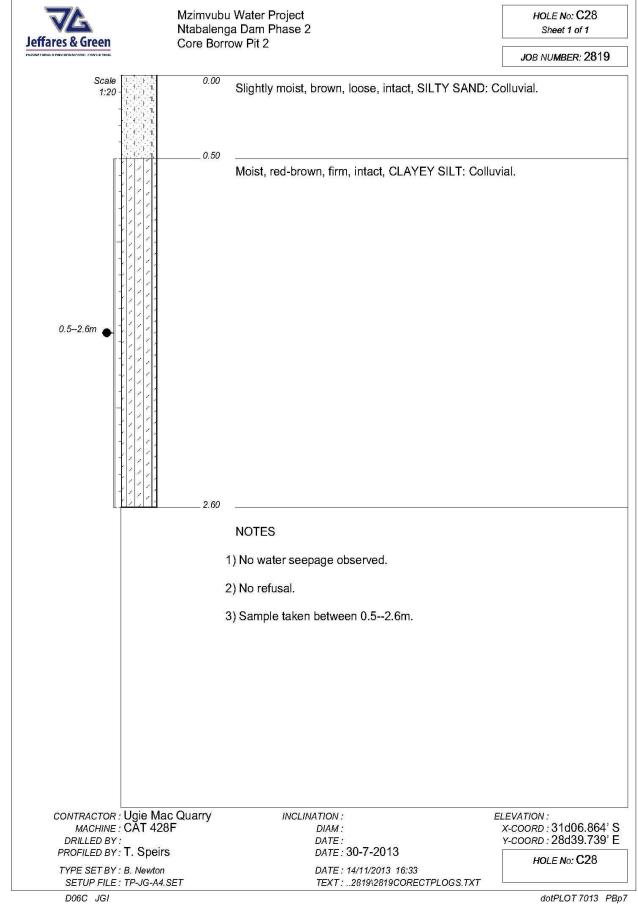


Fig G- 53: Core Borrow Pit 2 - Hole No: C28



Fig G- 54: Core Borrow Pit 2 - Hole No: C29

G5:

SHELL BORROW PIT TRIAL PITS

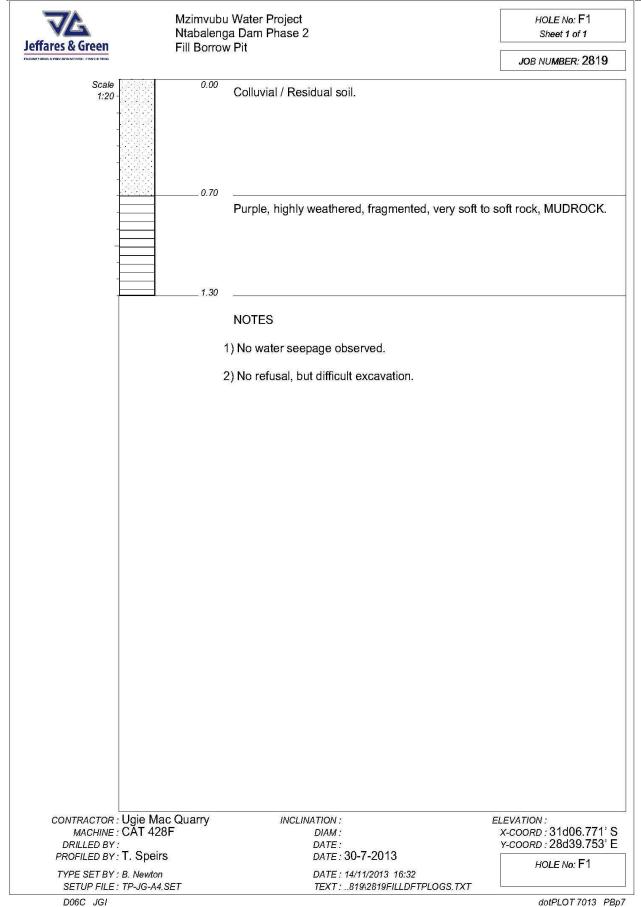


Fig G- 55: Fill Borrow Pit - Hole No: F1

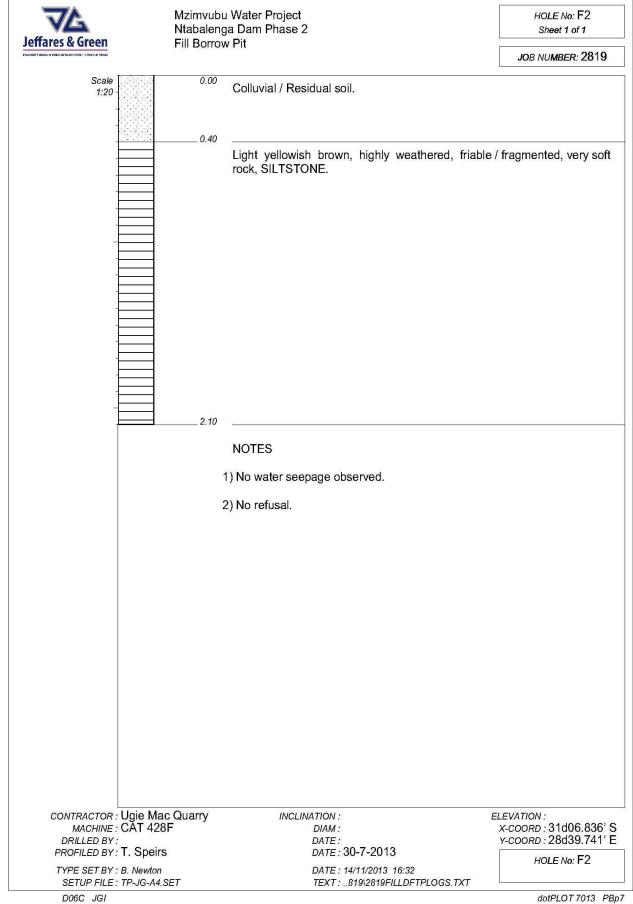


Fig G- 56: Fill Borrow Pit - Hole No: F2

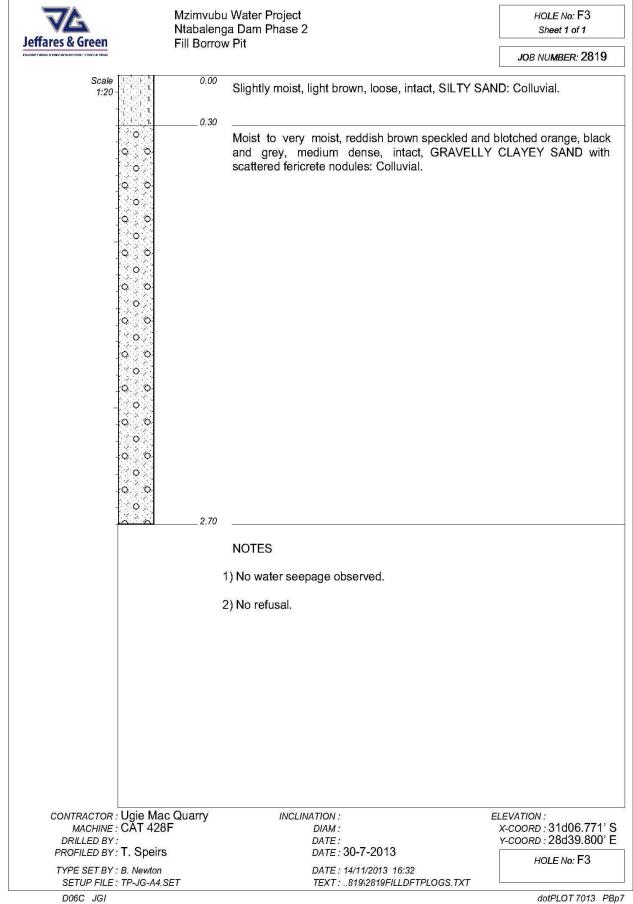


Fig G- 57: Fill Borrow Pit - Hole No: F3

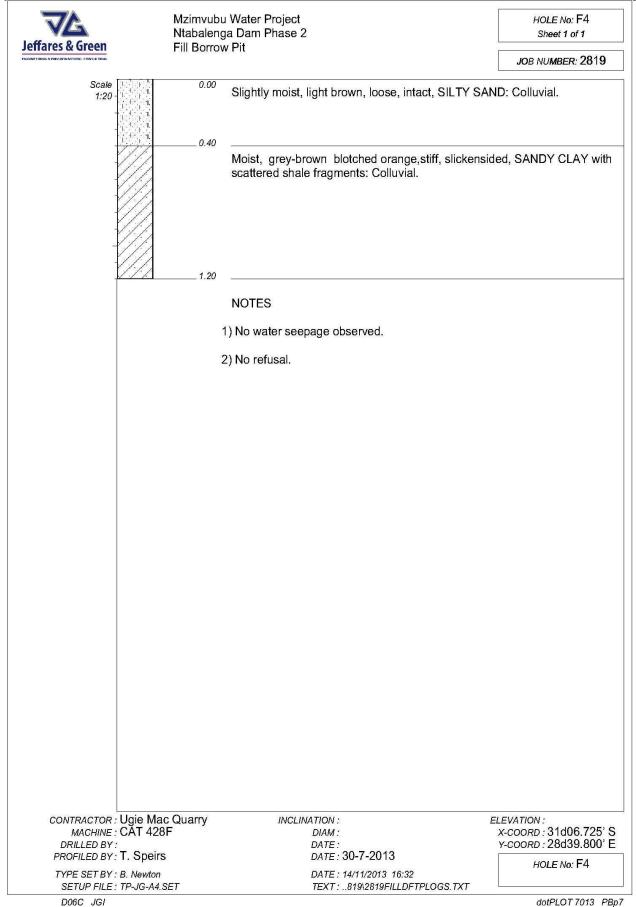


Fig G- 58: Fill Borrow Pit - Hole No: F4

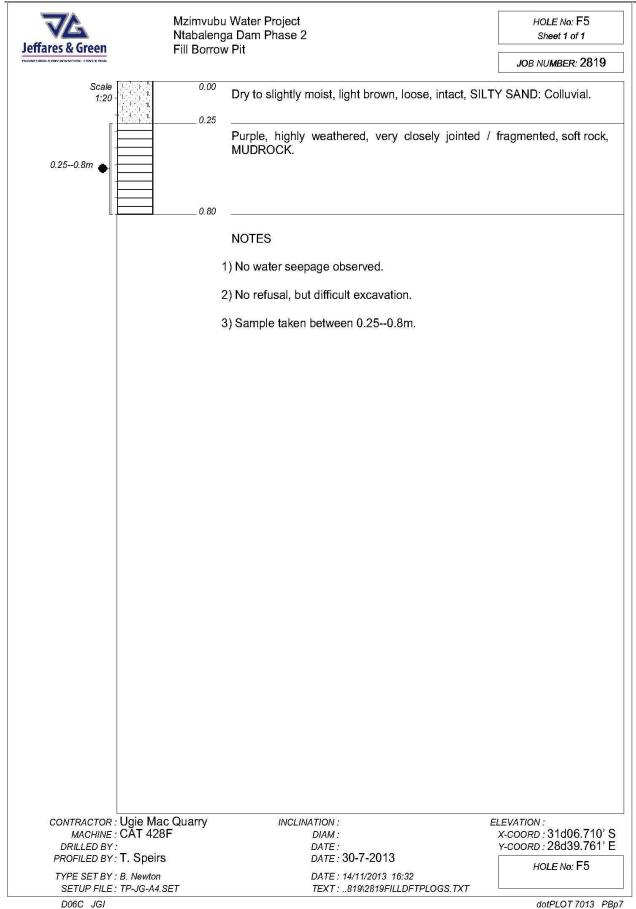


Fig G- 59: Fill Borrow Pit - Hole No: F5

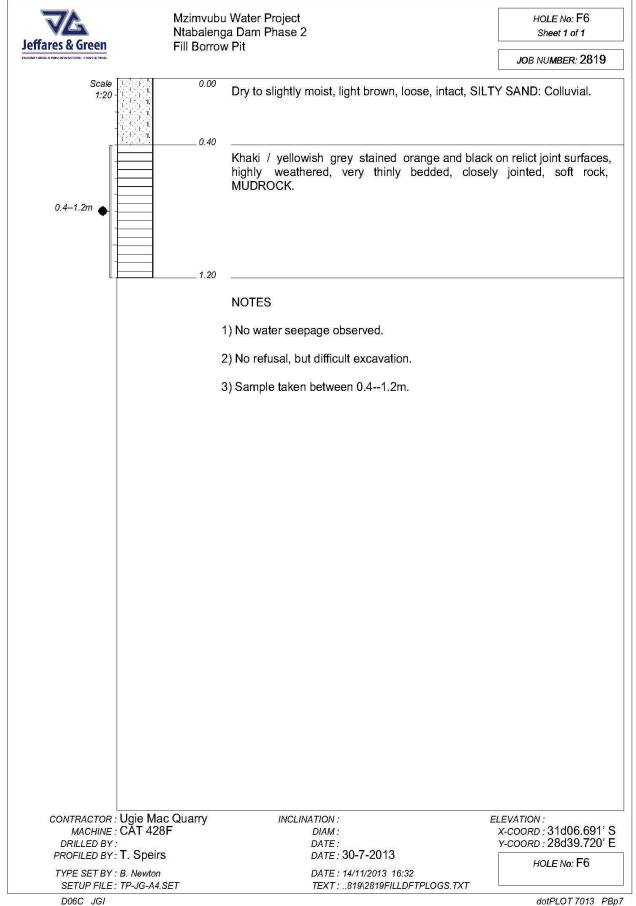


Fig G- 60: Fill Borrow Pit - Hole No: F6

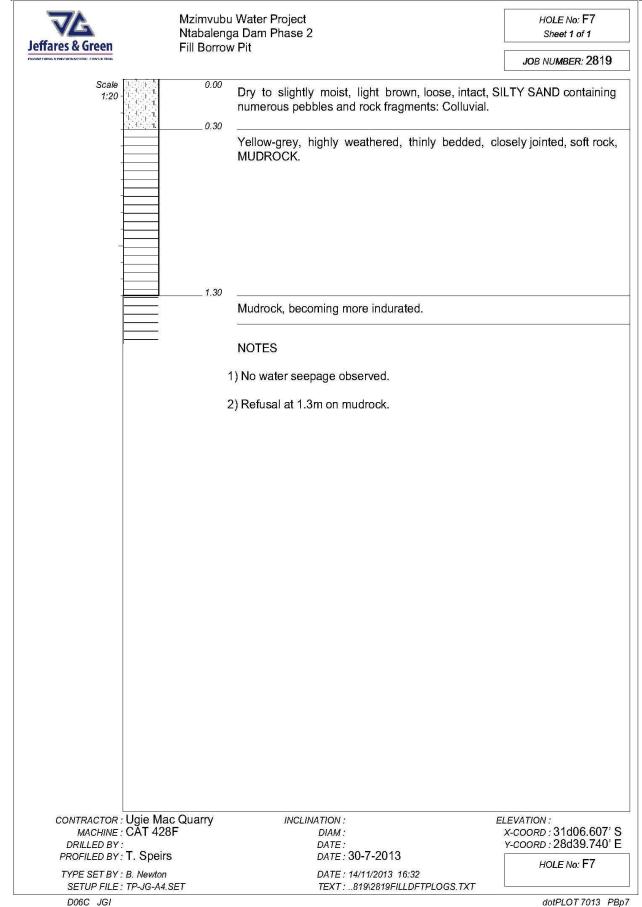


Fig G- 61: Fill Borrow Pit - Hole No: F7

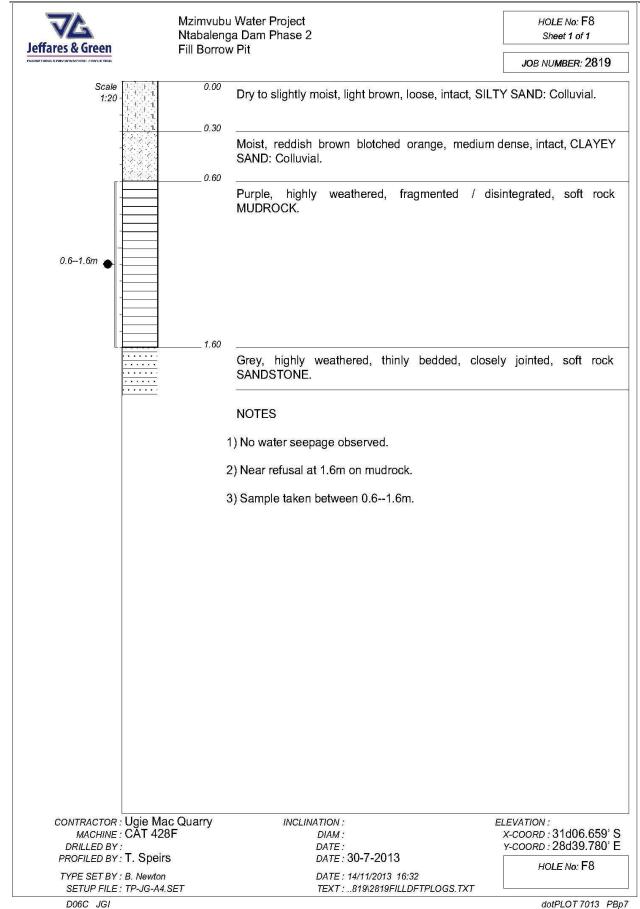


Fig G- 62: Fill Borrow Pit - Hole No: F8

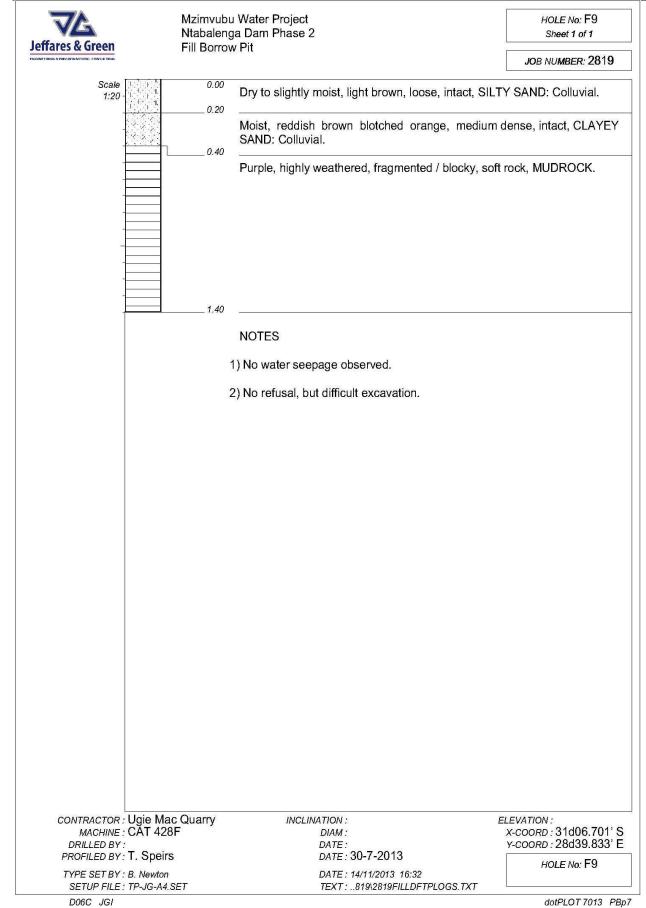


Fig G- 63: Fill Borrow Pit - Hole No: F9

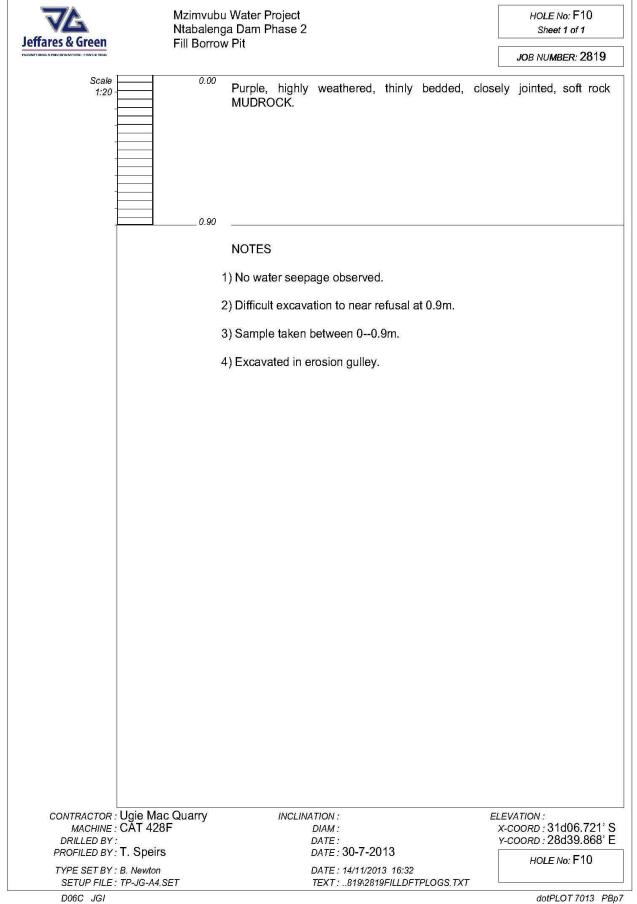


Fig G- 64: Fill Borrow Pit - Hole No: F10

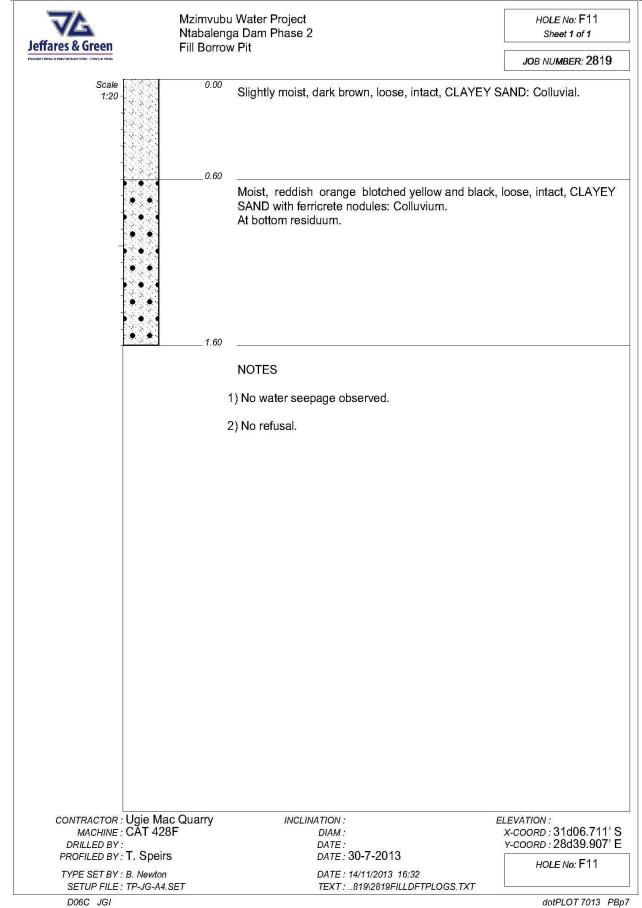


Fig G- 65: Fill Borrow Pit - Hole No: F11

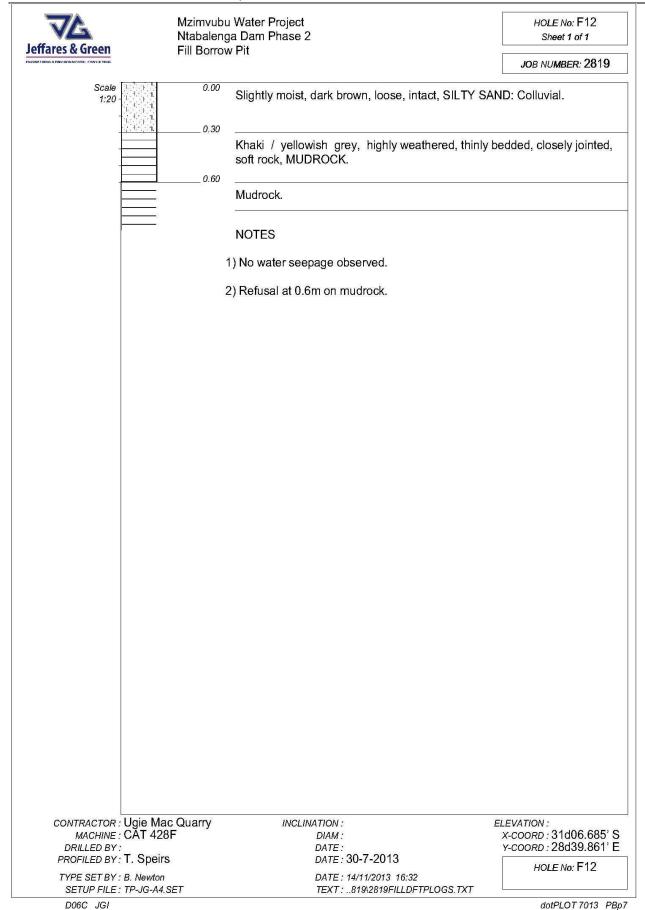


Fig G- 66: Fill Borrow Pit - Hole No: F12

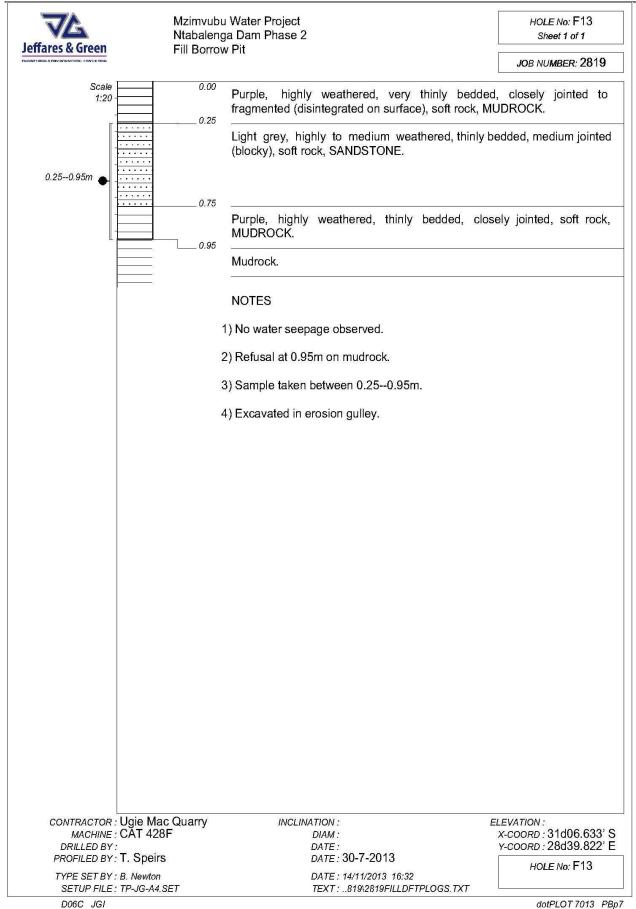


Fig G- 67: Fill Borrow Pit - Hole No: F13

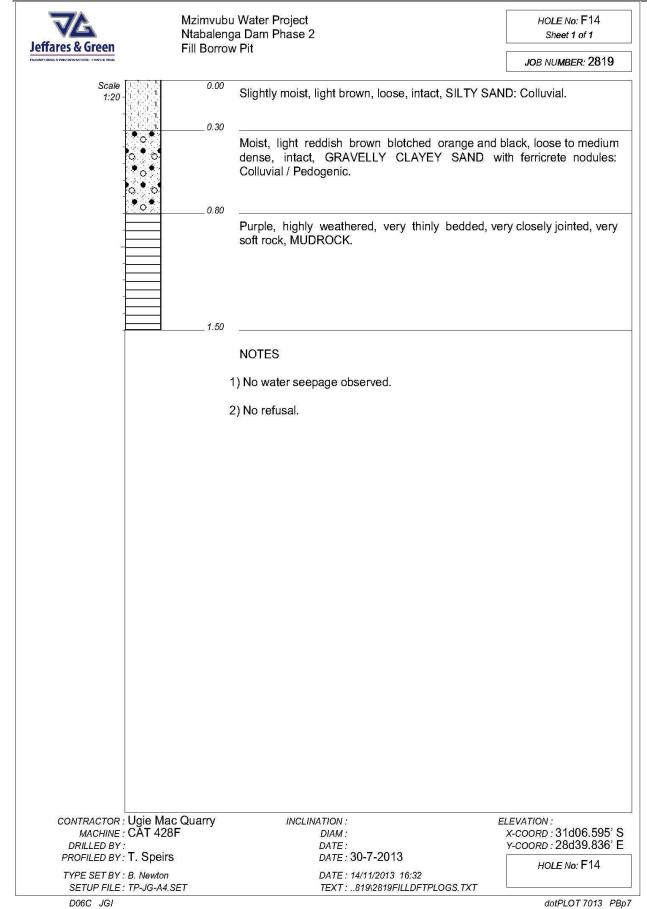


Fig G- 68: Fill Borrow Pit - Hole No: F14

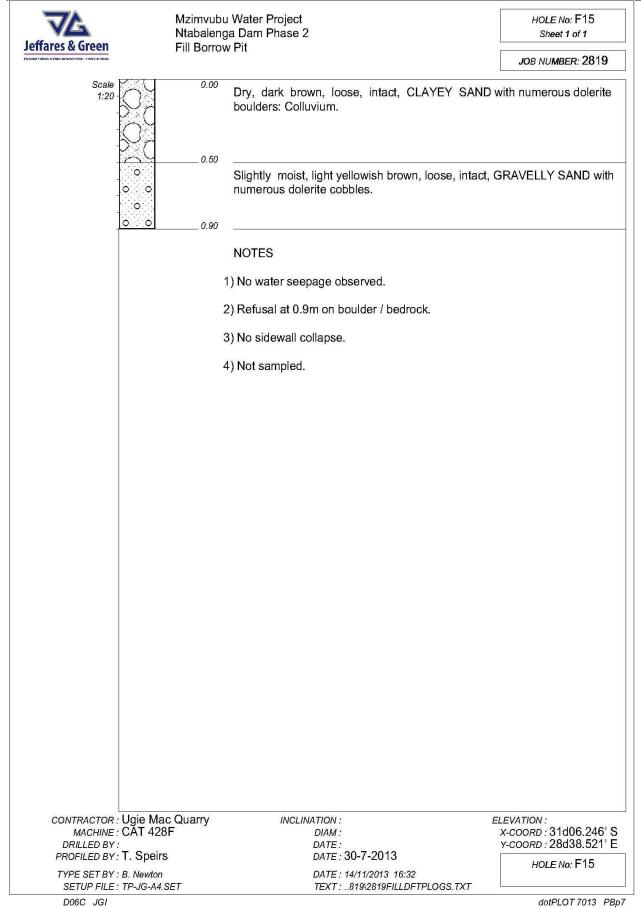


Fig G- 69: Fill Borrow Pit - Hole No: F15

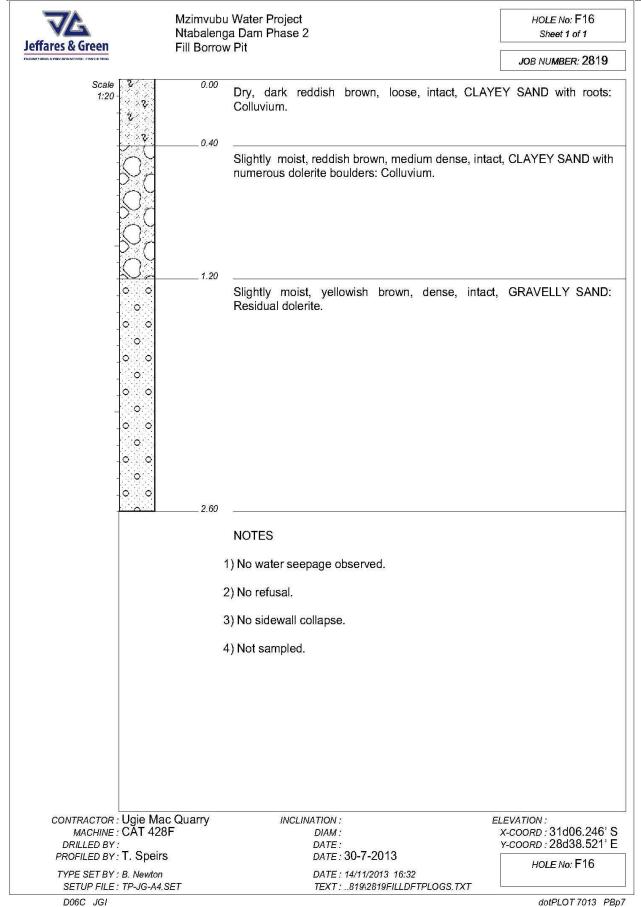


Fig G- 70: Fill Borrow Pit - Hole No: F16

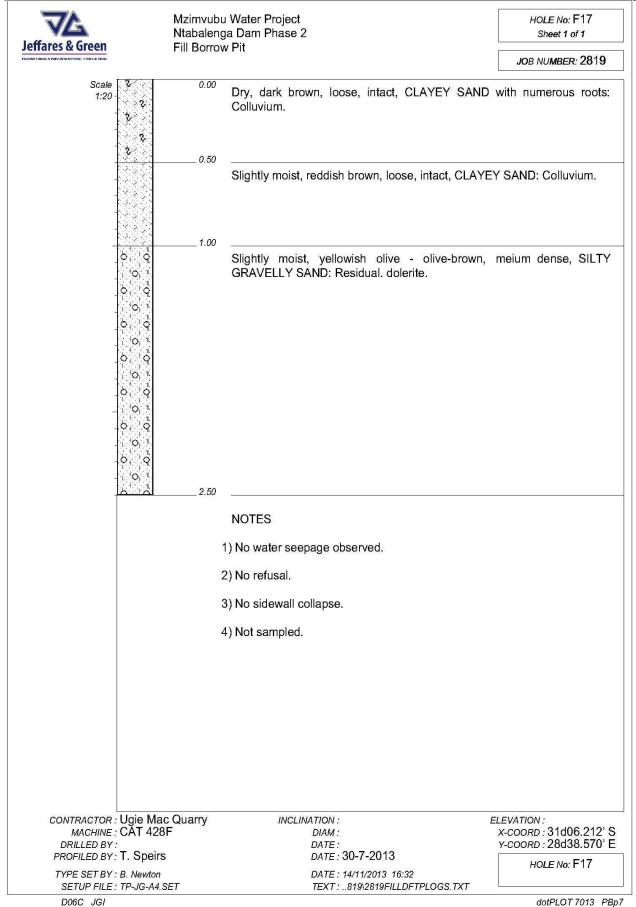


Fig G- 71: Fill Borrow Pit - Hole No: F17

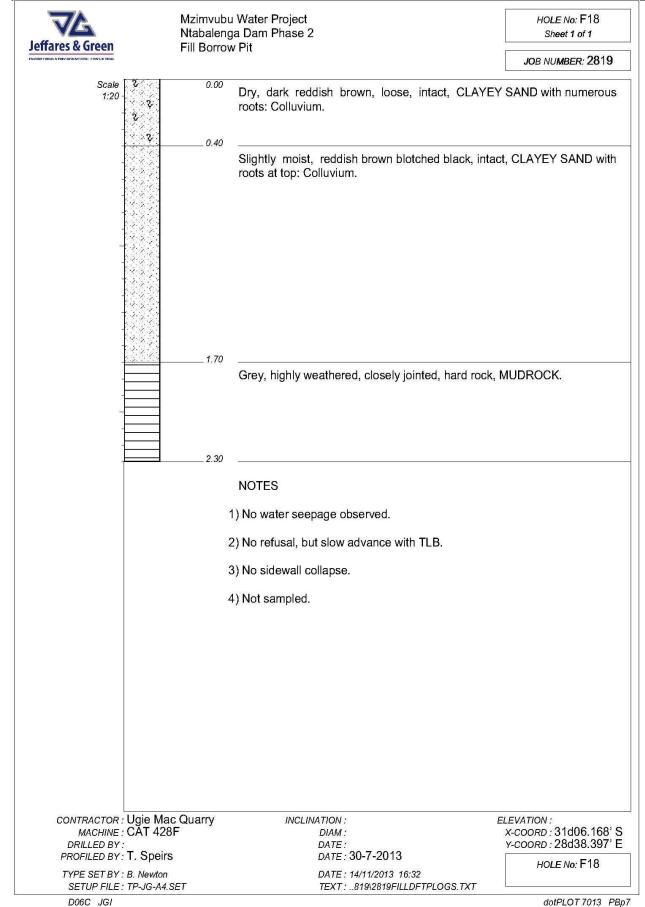


Fig G- 72: Fill Borrow Pit - Hole No: F18

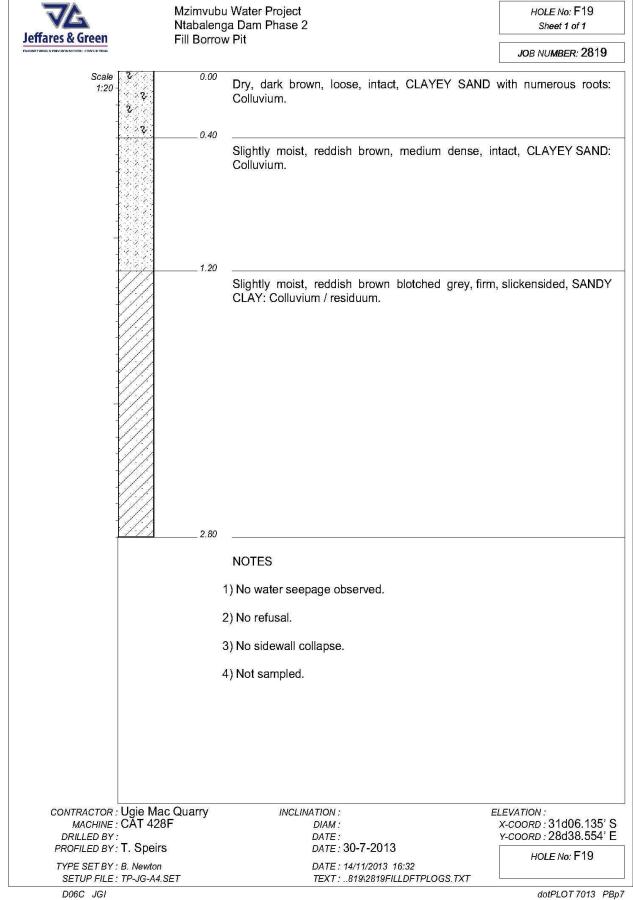


Fig G- 73: Fill Borrow Pit - Hole No: F19

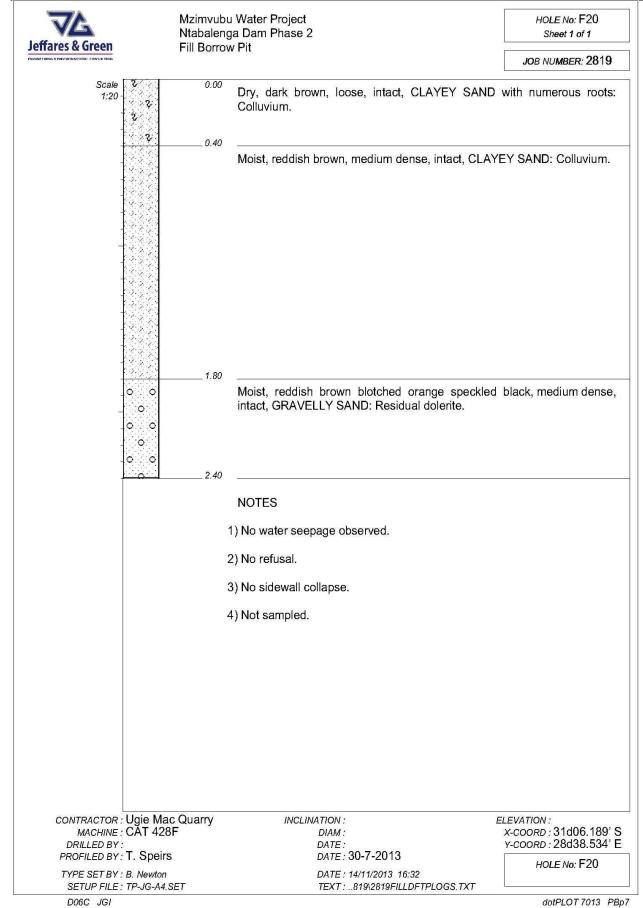


Fig G- 74: Fill Borrow Pit - Hole No: F20

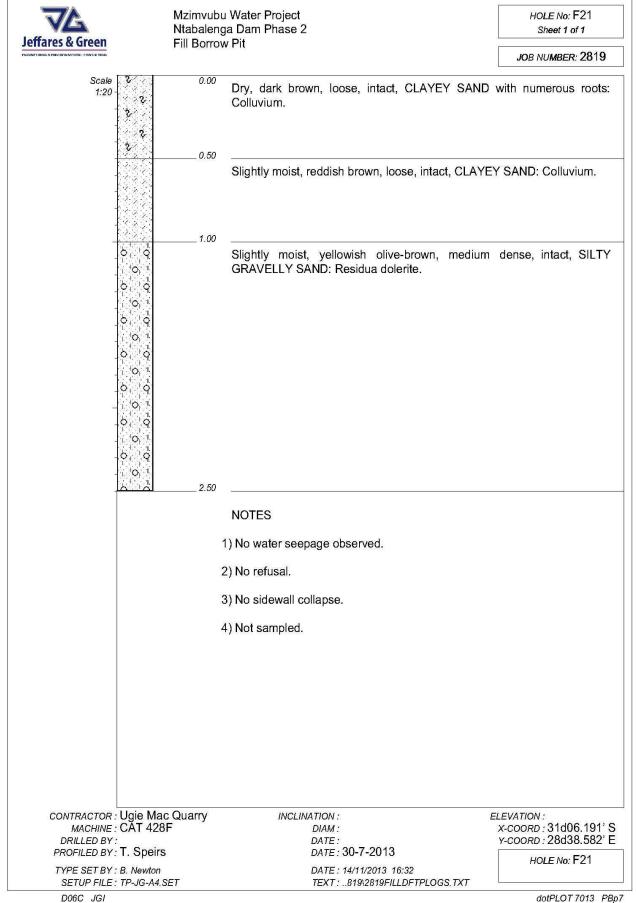


Fig G- 75: Fill Borrow Pit - Hole No: F21

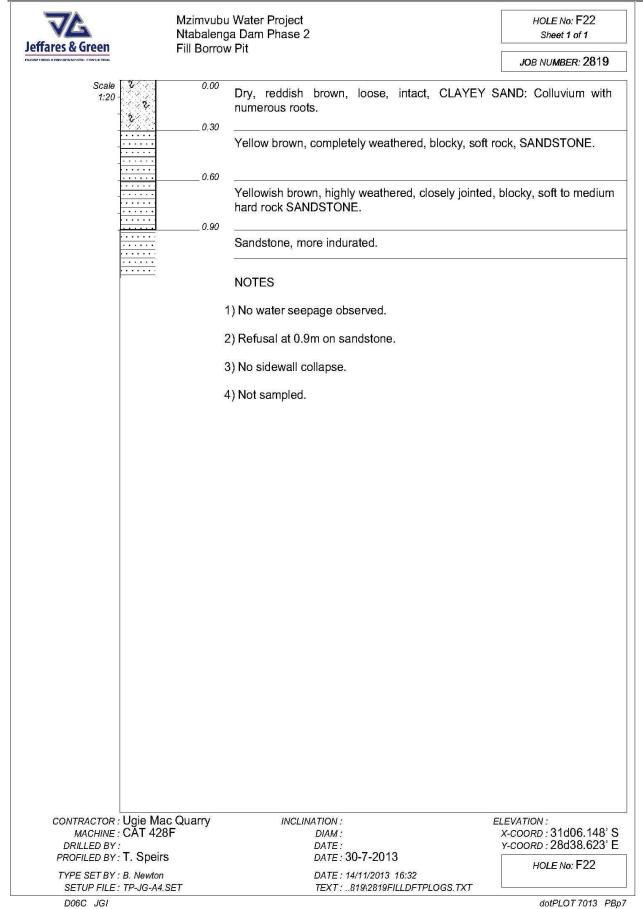


Fig G- 76: Fill Borrow Pit - Hole No: F22

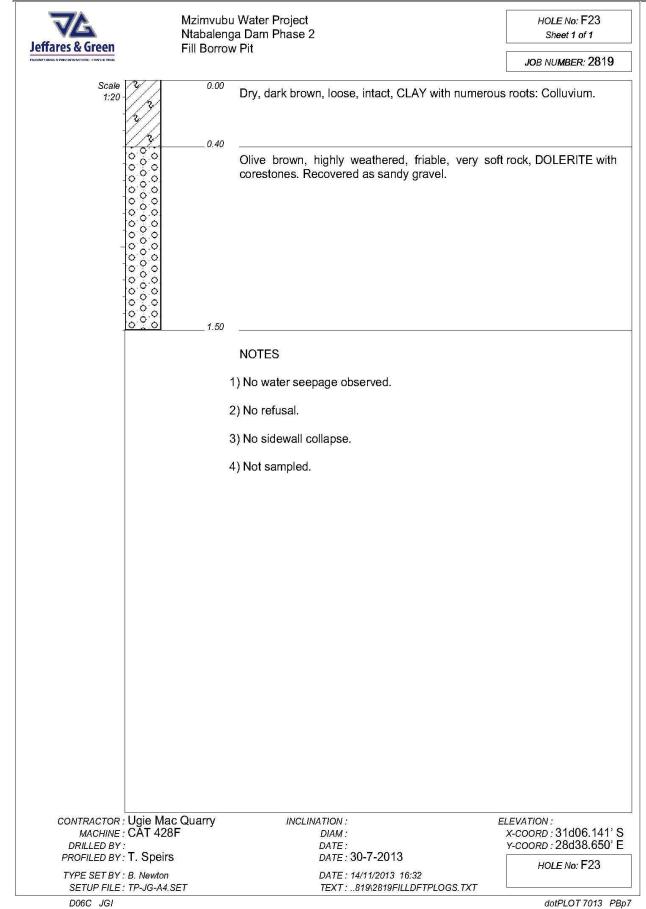


Fig G- 77: Fill Borrow Pit - Hole No: F23

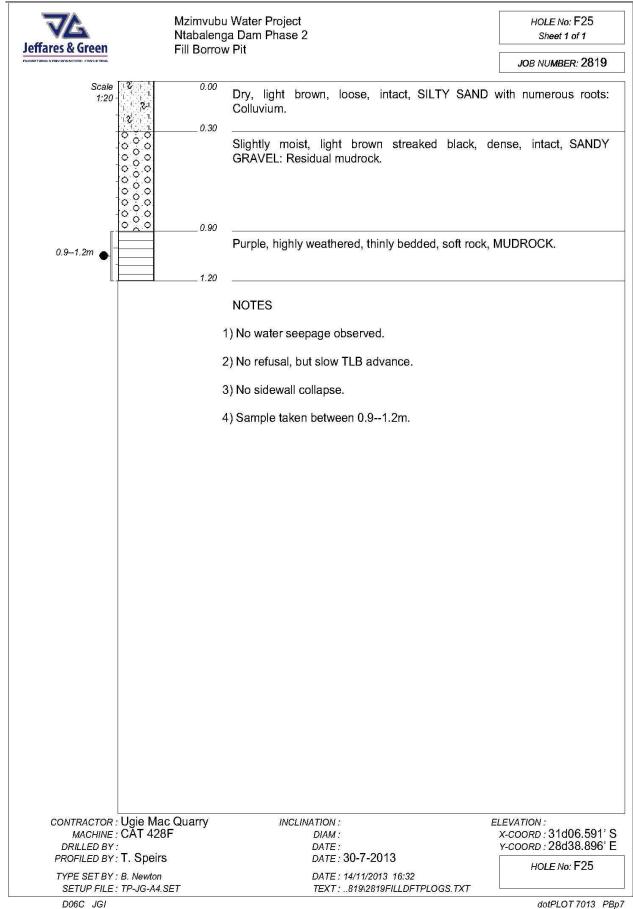


Fig G- 78: Fill Borrow Pit - Hole No: F25

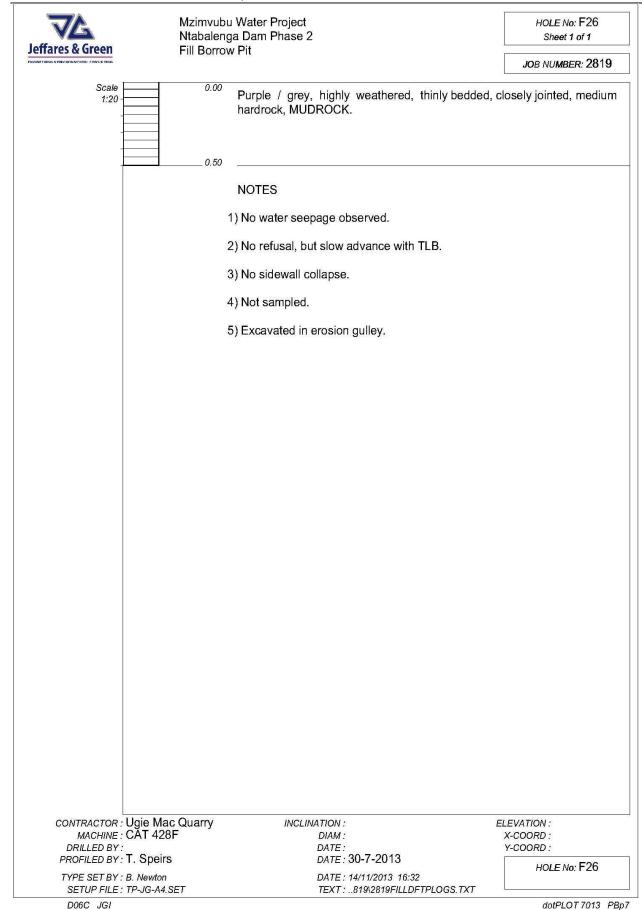


Fig G- 79: Fill Borrow Pit - Hole No: F26

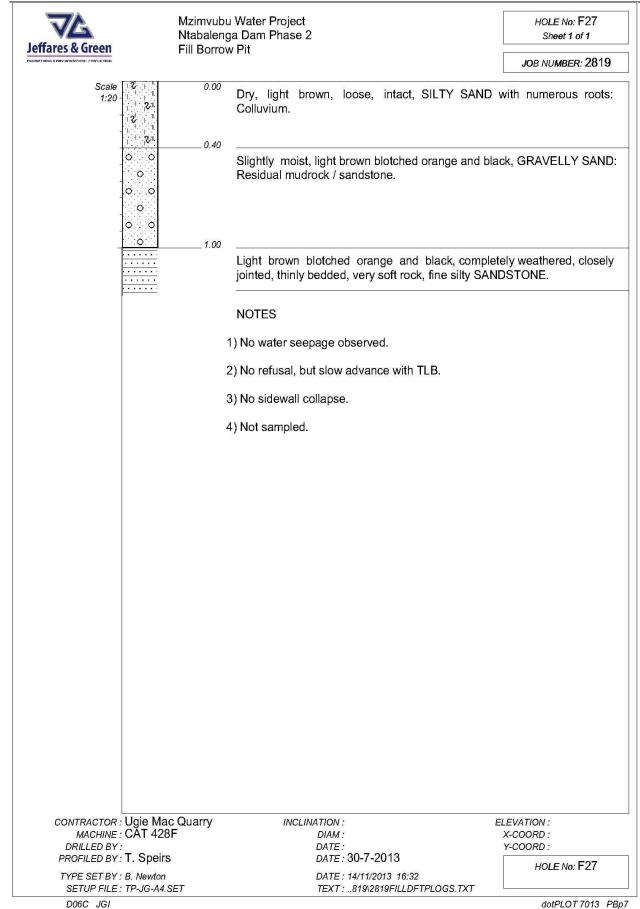


Fig G- 80: Fill Borrow Pit - Hole No: F27

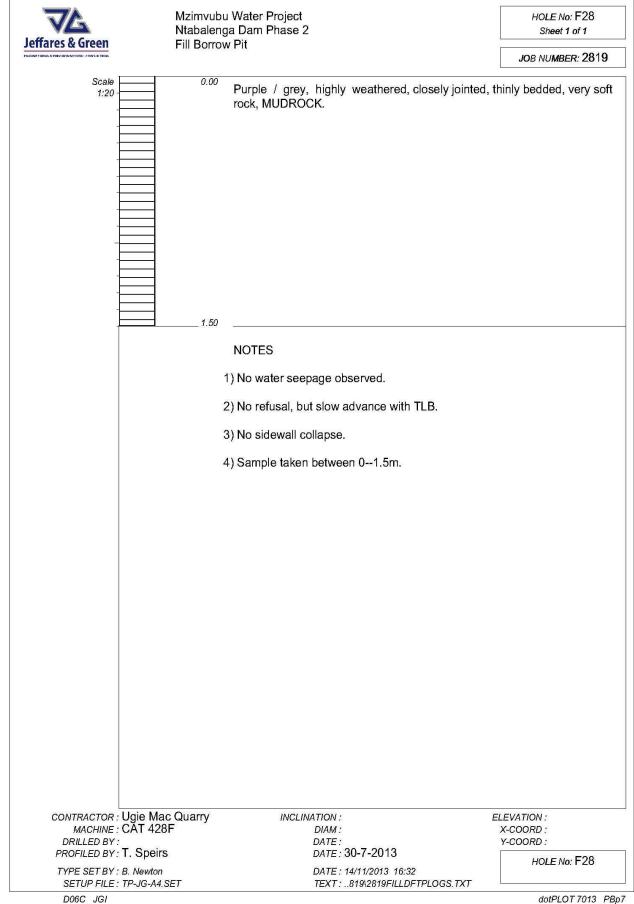


Fig G- 81: Fill Borrow Pit - Hole No: F28

0.1 **20** 1 10 10 1 **D**p1

Fig G- 82: Fill Borrow Pit - Hole No: F29

dotPLOT 7013 PBp7

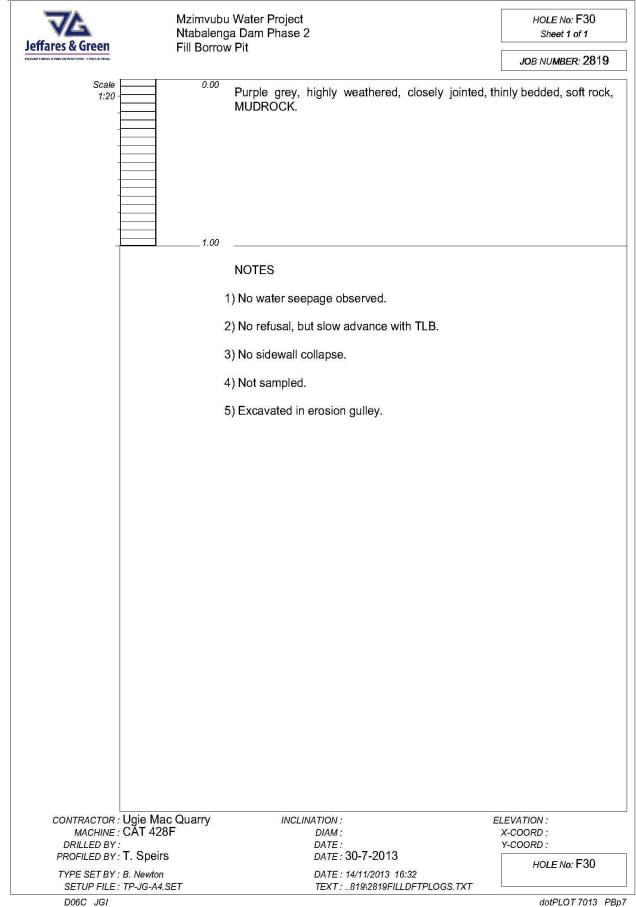


Fig G- 83: Fill Borrow Pit - Hole No: F30

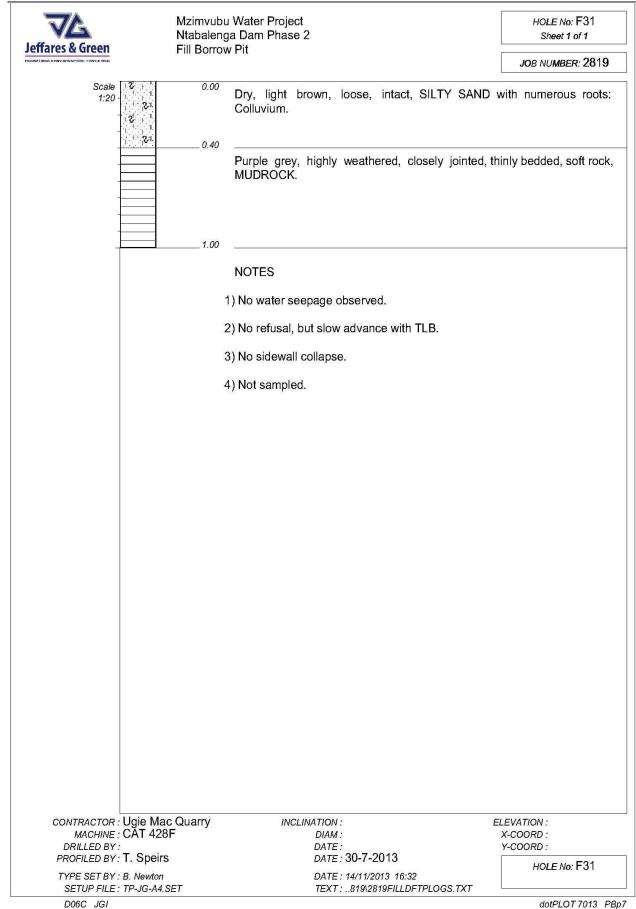


Fig G- 84: Fill Borrow Pit - Hole No: F31

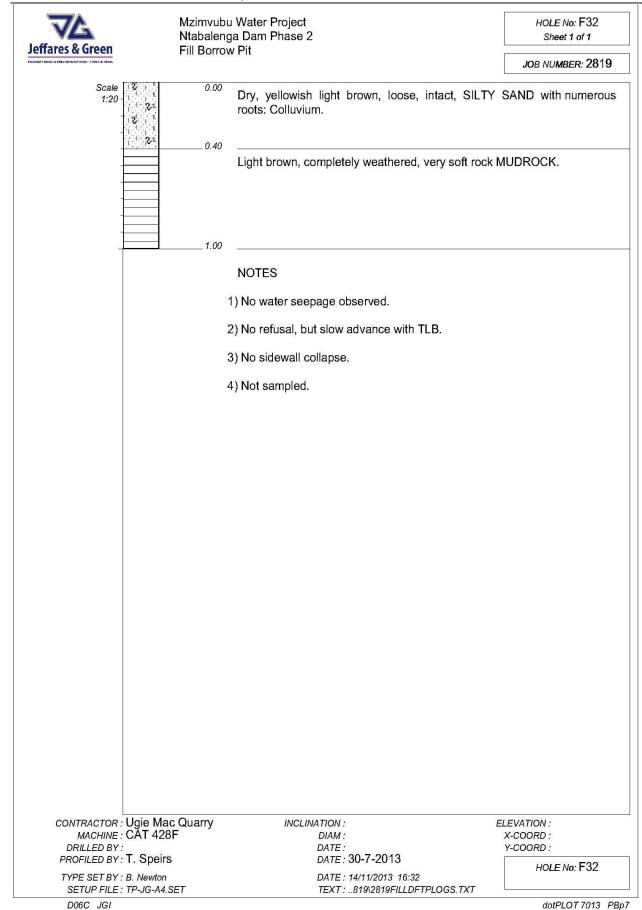


Fig G- 85: Fill Borrow Pit - Hole No: F32

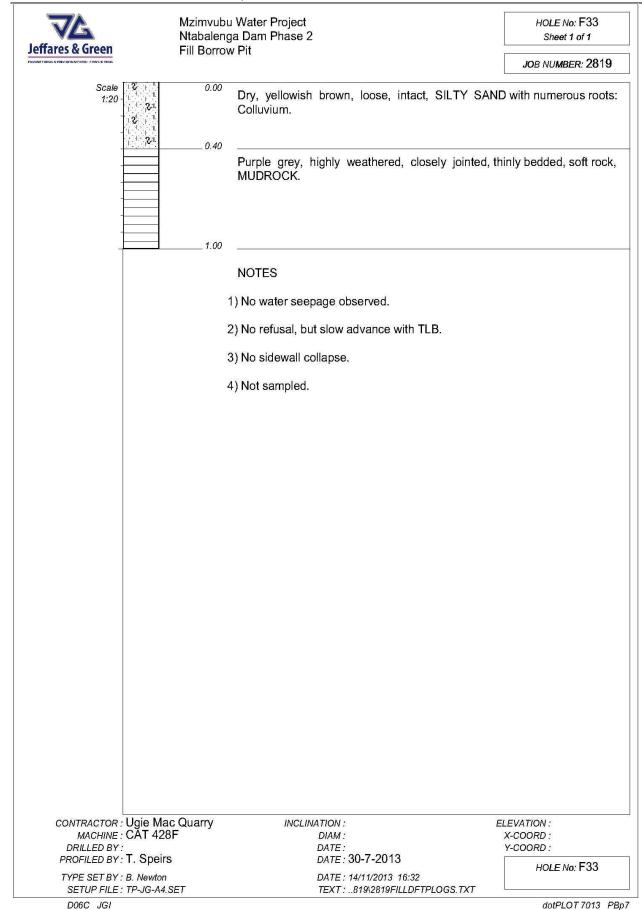


Fig G- 86: Fill Borrow Pit - Hole No: F33

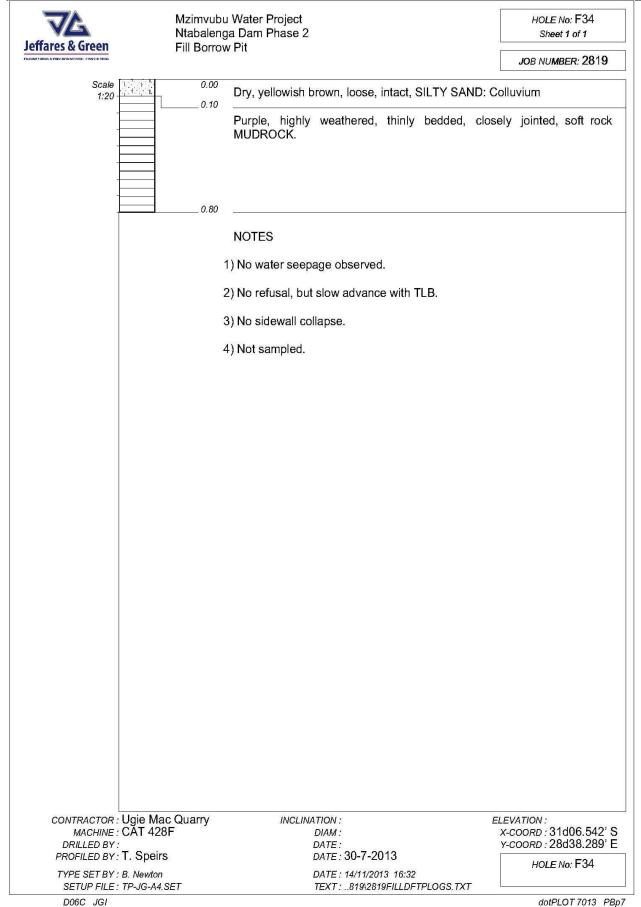


Fig G- 87: Fill Borrow Pit - Hole No: F34

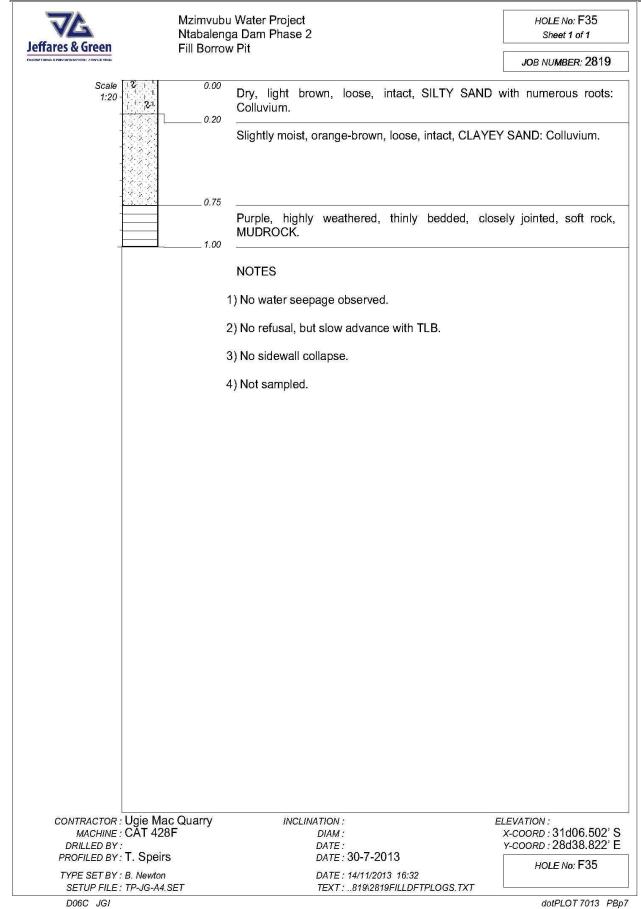


Fig G- 88: Fill Borrow Pit - Hole No: F35

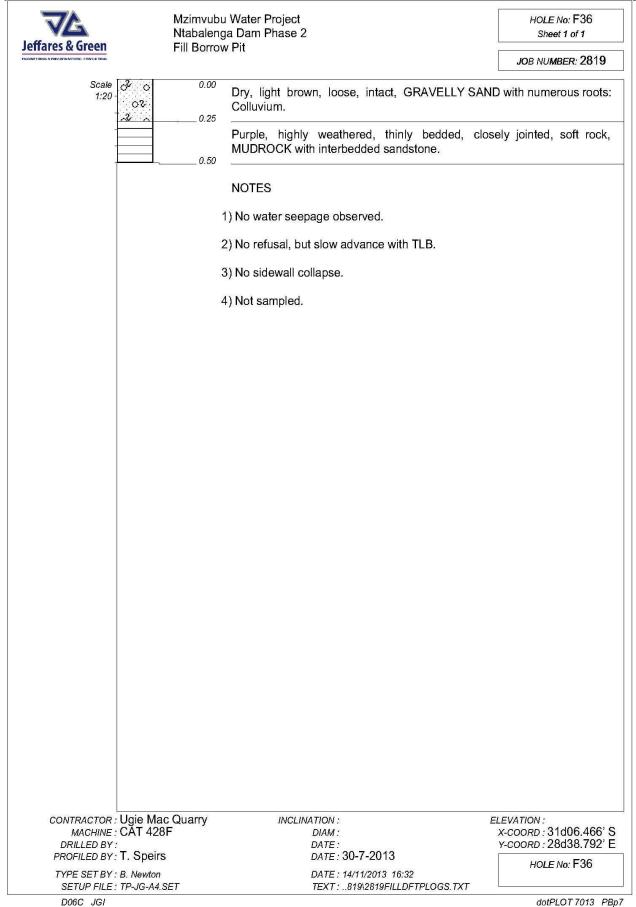


Fig G- 89: Fill Borrow Pit - Hole No: F36

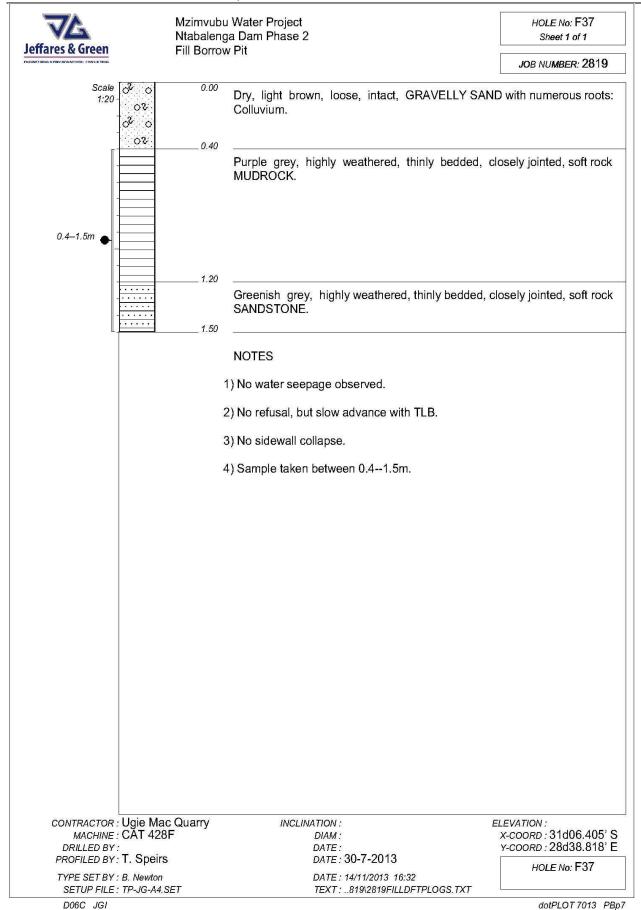


Fig G- 90: Fill Borrow Pit - Hole No: F37

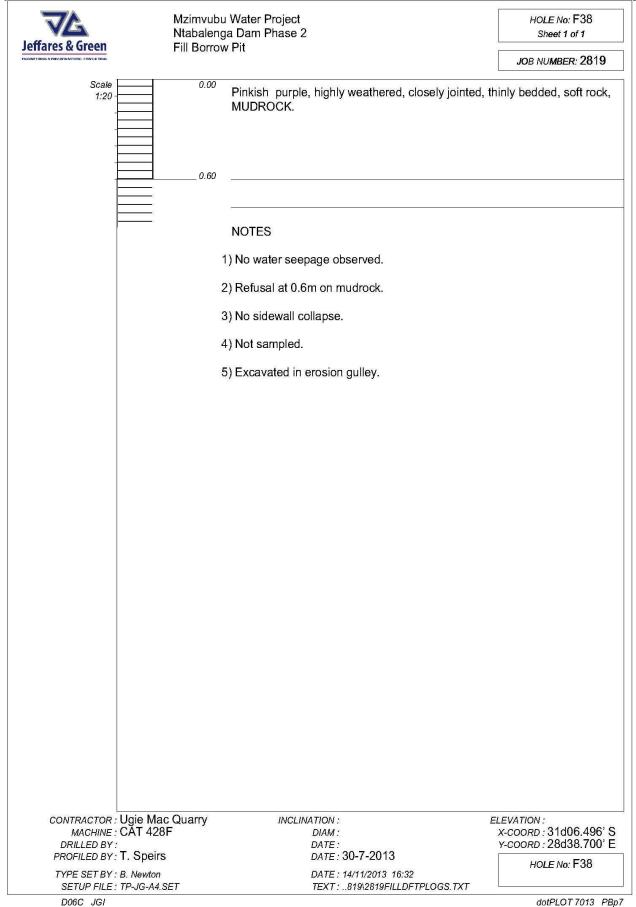


Fig G- 91: Fill Borrow Pit - Hole No: F38

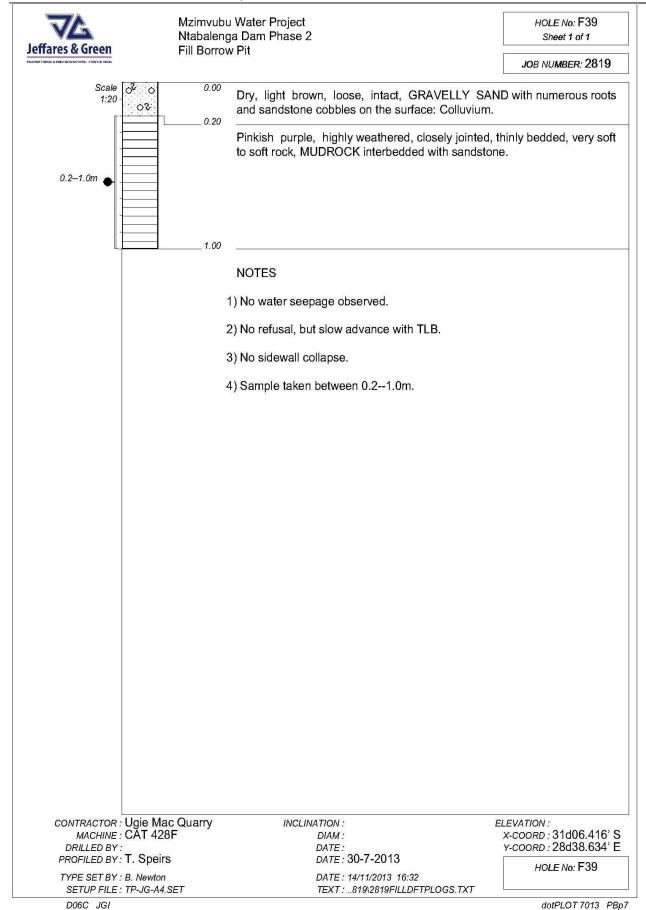


Fig G- 92: Fill Borrow Pit - Hole No: F39

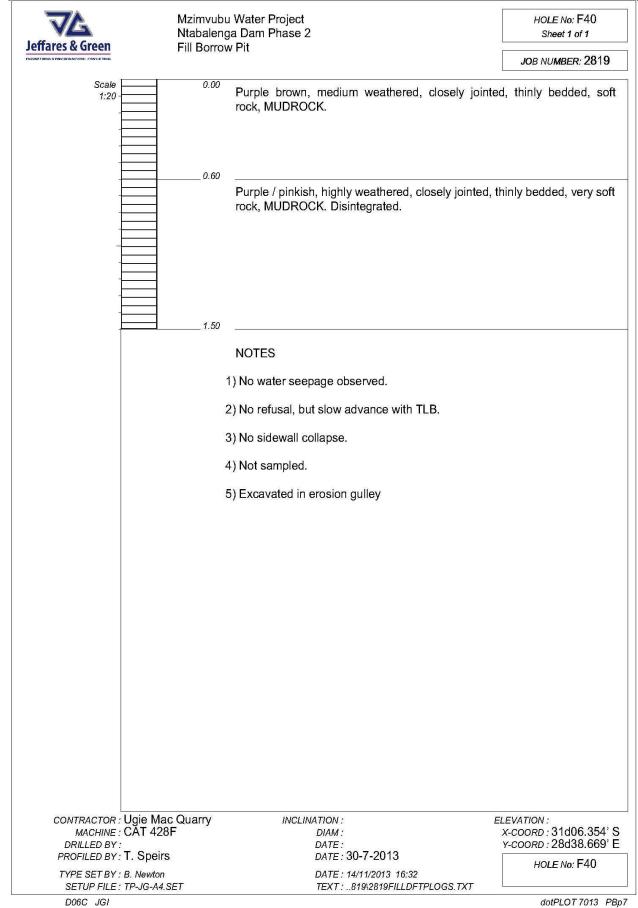


Fig G- 93: Fill Borrow Pit - Hole No: F40

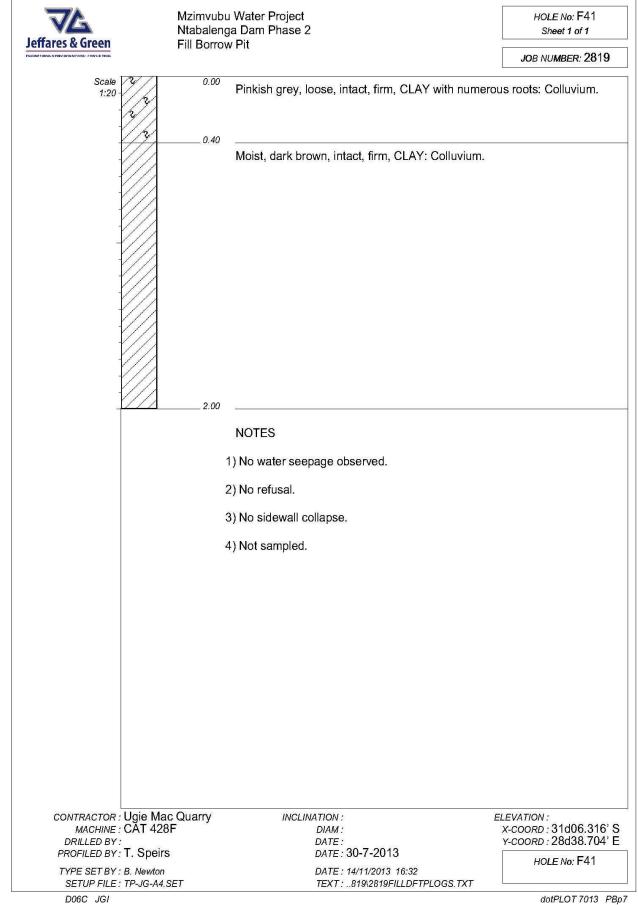


Fig G- 94: Fill Borrow Pit - Hole No: F41

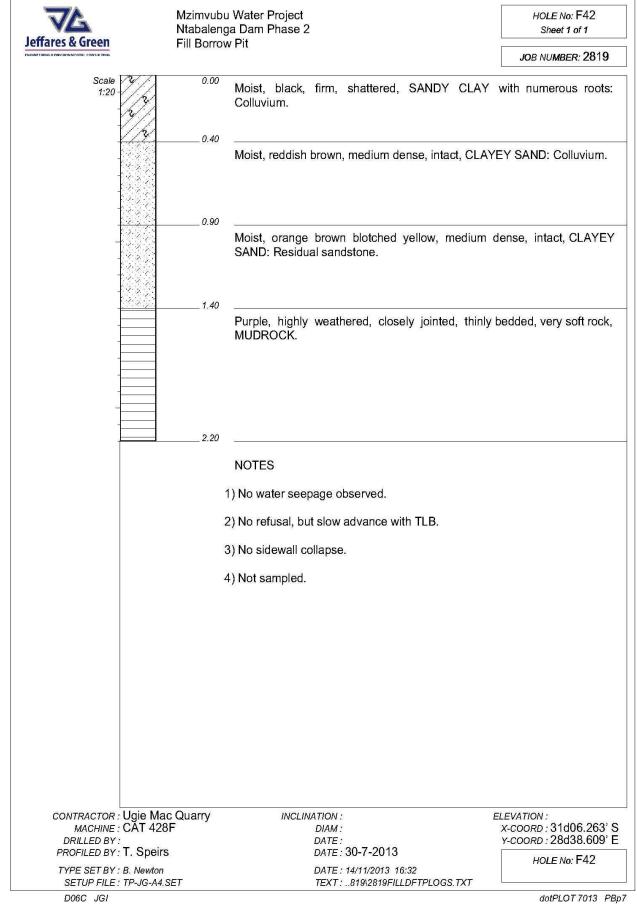


Fig G- 95: Fill Borrow Pit - Hole No: F42

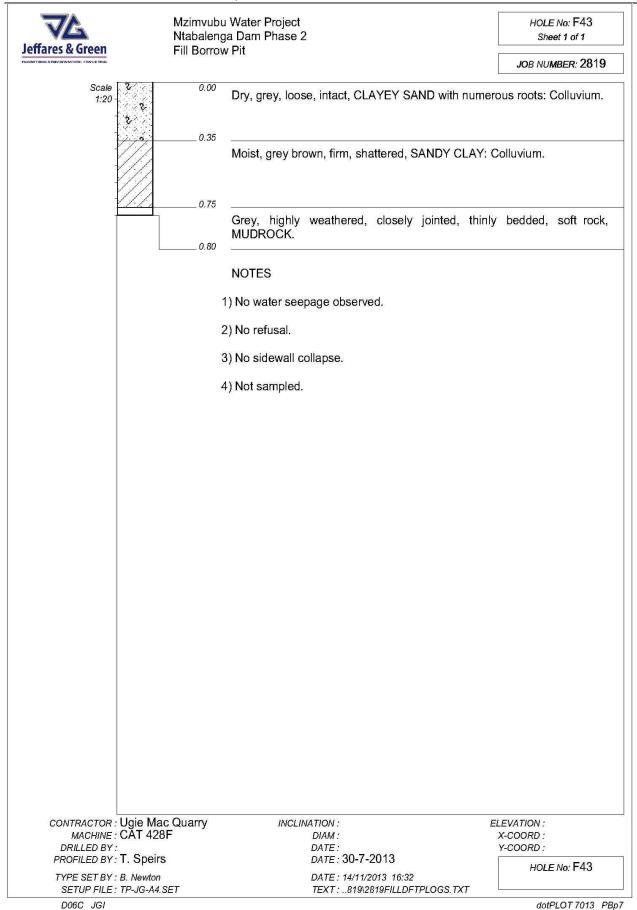


Fig G- 96: Fill Borrow Pit - Hole No: F43

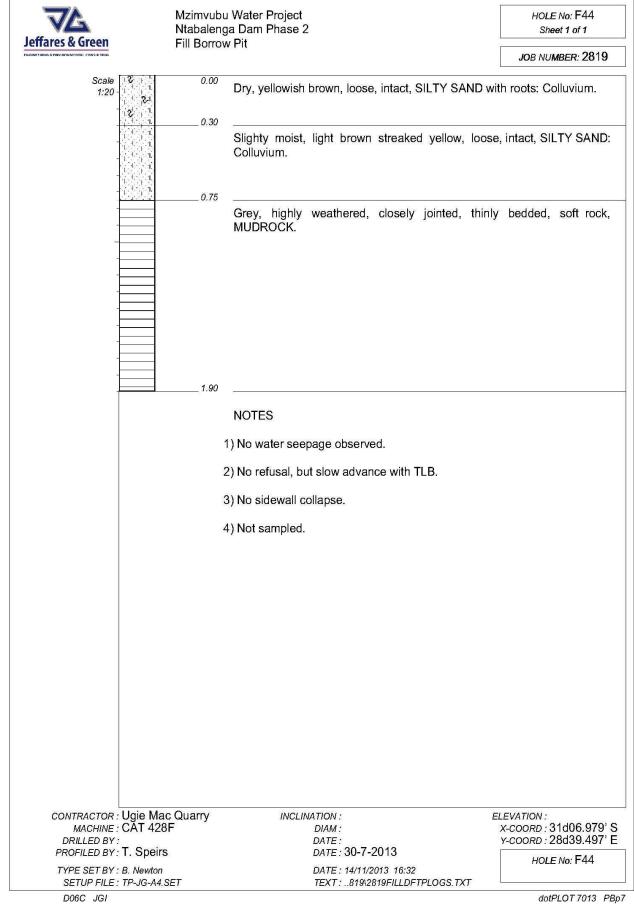


Fig G- 97: Fill Borrow Pit - Hole No: F44

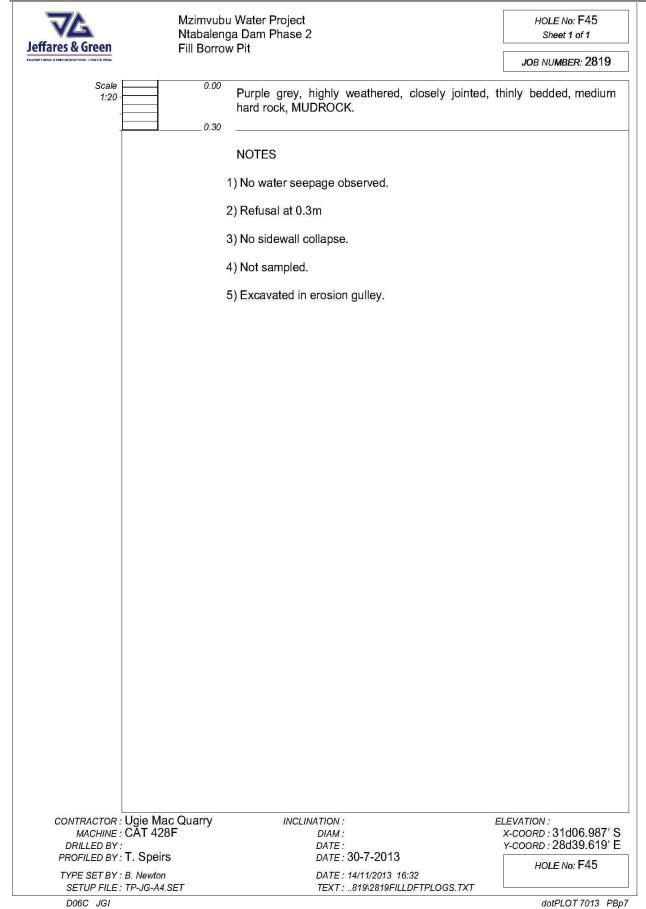


Fig G- 98: Fill Borrow Pit - Hole No: F46

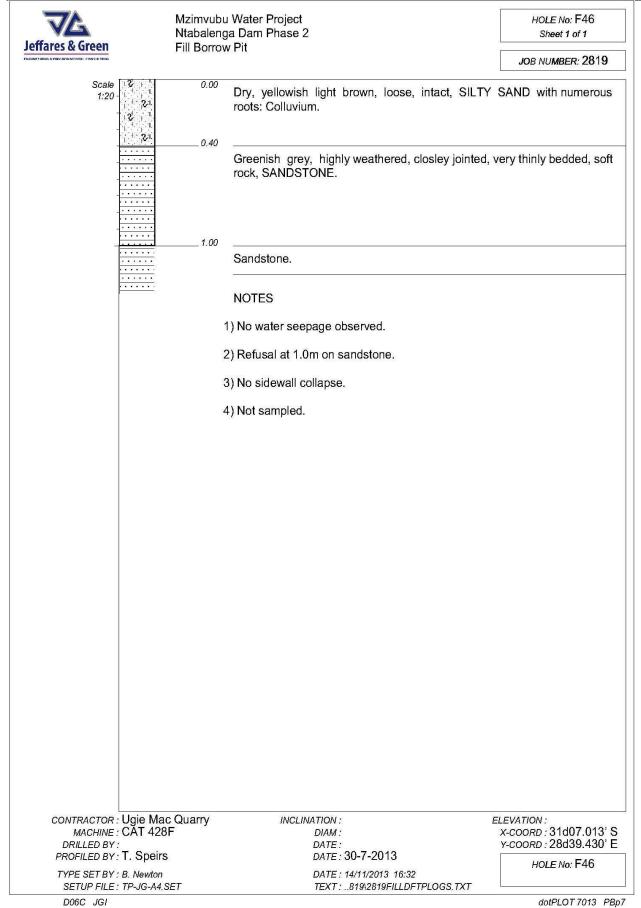


Fig G- 99: Fill Borrow Pit - Hole No: F46

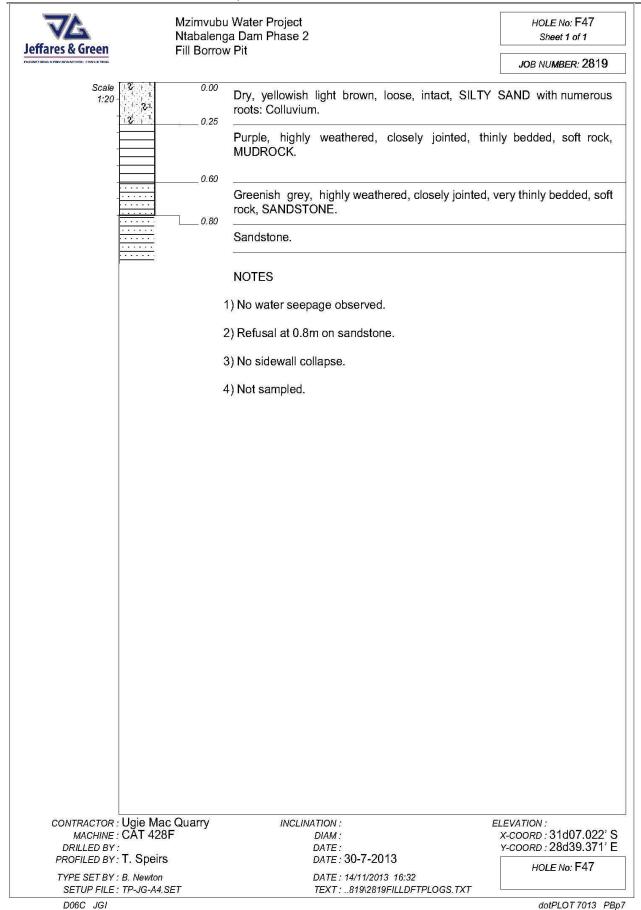


Fig G- 100: Fill Borrow Pit - Hole No: F47

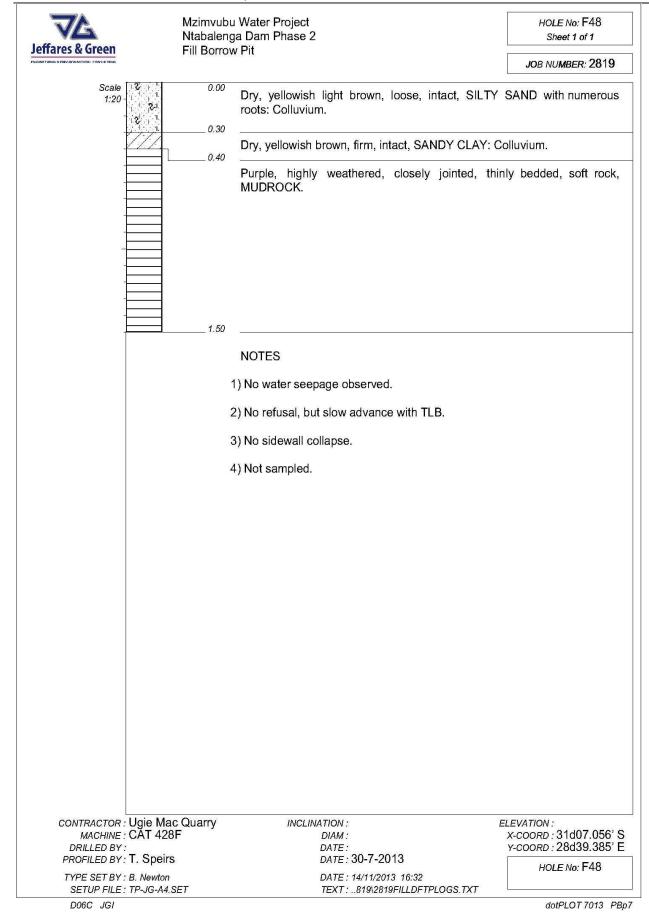


Fig G- 101: Fill Borrow Pit - Hole No: F48

APPENDIX H

LABORATORY TEST RESULTS

H1

UCS

P O Box 1675, Hillcrest, 3650, South Africa. Tel (031) 700 9394 (031) 700 9342 E-mail: ukhonkolo@contest.co.za

This report shall not be reproduced, except in full, without the approval of Contest

Ref: CJ13/09/935 2 October, 2013

Client: Jeffares & Green Consultants

Project: Mzimvubu Water Project - Ntabelanga Dam: Phase 2 Geotechnical Investigation

Subject: Compressive Strength Testing on Dolerite Rock Cores

Order: Mr T Speirs

LABORATORY REPORT TESTING OF ROCK CORES

1. CLIENT

1.1 Jeffares & Green, P O Box 794, HILTON, 3201.

2. BRIEF FROM CLIENT

2.1 Contest was requested to determine the compressive strength of five dolerite rock cores received on 20.09.2013 in accordance with SANS 5865:2006.

3. SAMPLES

3.1 Five dolerite rock cores were tested on 23.09.2013.

4. INFORMATION SUPPLIED BY THE CLIENT

4.1 Site : Ntabelanga Dam (Mzimvubu Water Project)

4.2 Location : Borehole:

: N1 - (7.82 - 7.95) : N2 - (7.75 - 7.9) : N2 - (12.31 - 12.49) : NL 2/6 - (1.95 - 2.25) : NL 2/9 - (4.89 - 2.25)

4.3 Date drilled : Not given

4.4 Drilling contractor : Not given

5. CORE PREPARATION

- 5.1 Testing of cores were carried out by our laboratories in Westmead
- 5.2 The cores were measured as received; any significant details recorded and then marked up for trimming.

Adam Investments cc. Reg. No 1988/019362/23 t/a CONTEST Concrete Technology Services Managing Member: A J M Horton Pr Tech (Eng), Dip ACT, HND (Chem), HNC (Civ. Eng),FICT, MSA Corr I Members: MT Clark, JS Dunnett, MC Mzobe, RJL Raw B Tech (Civil Eng)

Page 1 of 2

Testing, Training and Consulting in Concrete

- 5.3 The cores were photographed in surface dry and wet states.
- 5.4 After trimming to length the cores were weighed in air and water, in order to determine the density.
- 5.5 Finally the cores were capped using sulphur mortar.

6. RESULTS

6.1 See appended core report and photographs.

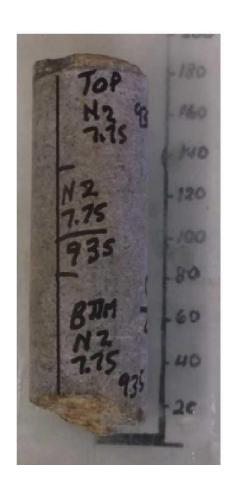
COMMENT

Core Number N1 (7.82 - 7.95) showed the typical signs of rock decomposition which are a change in colour of the rock from a dark grey for dolorite to a brown/yellow colouration. This decomposition would have contributed significantly to the lower compressive strength measured for this core.

RJL RAW B Tech (Civil Eng)


MMay

TECHNICAL INVESTIGATIONS:	NTABELANGA, SC	MABADI AND THAB	ENG DAM SITES: A	PPENDICES	
	CORE REPORT				
Client		Jeffa	es & Green Cons	sultants	
Project	Mzimvubu W	ater Project - Ntal	oelanga Dam: Ph	ase 2 Geotechnic	al Investigation
Job Number			CJ13/09/935		
Date Cast			Not given		
Date Tested			23.09.2013		
Age, Day			Not given		
Date Received			20.09.2013		
Direction of Dilling			Not given		
Report date			26.09.2013		
Client Reference		BOREHOLE N	O - (DOLERITE	ROCK CORES)	
	N1 (7.82-7.95)	N2 (7.75-7.9)	N2 (12.31-12.49)	NL 2/6 (1.95-2.25)	NL 2/9 (4.89-5.09)
DIMENSIONS	(
Max length (mm)	125	155	350	300	195
Min length (mm)	120	140	295	175	175
Diameter (mm)	51.52	52.03	60.34	60.38	60.48
Trim Length (mm)	51.62	52.69	61.03	60.17	60.27
Capped length (mm)	51.40	52.67	61.04	60.07	60.19
Trim length/diameter	1.00	0.99	0.99	1.00	1.00
Cap length/diameter	1.00	0.99	0.99	1.01	1.00
Cap rengti / diameter	1.00	0.93	0.99	1.01	1.00
REINFORCEMENT					
	Steel 1	Steel 1	Steel 1	Steel 1	Steel 1
Dist. from end (mm)	0.0	0.0	0.0	0.0	0.0
Diameter (mm)	0.0	0.0	0.0	0.0	0.0
Mass (g)	0.0	0.0	0.0	0.0	0.0
(g)	Steel 2	Steel 2	Steel 2	Steel 2	Steel 2
Dist. from end (mm)	0.0	0.0	0.0	0.0	0.0
Diameter (mm)	0.0	0.0	0.0	0.0	0.0
	0.0	0.0	0.0	0.0	0.0
Mass (g)	0.0	0.0	0.0	0.0	0.0
DENSITY					
Mass in air (g)	275	299	466	460	462
Density (kg/m3)	2894	2978	2996	2976	2981
Air Voids %	0.00	0.00	0.00	0.00	0.00
7 till av Oldd 70	0.00	0.00	0.00	0.00	0.00
CORRECTIONS					
Length	1.00	1.00	1.00	1.00	1.00
Steel reinforcement	1.00	1.00	1.00	1.00	1.00
Air voids	1.00	1.00	1.00	1.00	1.00
Macronero (BARGROMEN MEN)	1.00				
LOADING	DING				
Load at failure (kN)	97.3	354.8	390.5	375.4	584.0
Failure mode `	normal	normal	normal	normal	normal
STRENGTH (MPa)	10.7	100.0	100.0	101 1	000.0
Uncorrected Strength	46.7	166.8	136.6	131.1	203.2
Length corrected	46.7	166.8	136.6	131.1	203.2
Length/Steel corrected	46.7	166.8	136.6	131.1	203.2
Length/Voids/Steel corrected	46.7	166.8	136.6	131.1	203.2

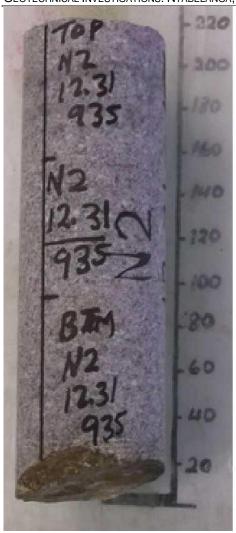

Notes

- 1. Sulphur mortar capping
- 2. SABS Test Method 865:1994
- 3.Length correction is non-standard

Miller



GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES



FEASIBILITY STUDY FOR THE MZIMVUBU WATER PROJECT GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

H2

PETROGRAPHIC

Faculty of Natural &
Agricultural Sciences
XRD & XRF Facility
Department of Geology
Pretoria 0002, South Africa

Direct Telephone: (012) 420-2722 Direct Telefax: (012) 362 5219 E-Mail: wiebke.grote@up.ac.za http://www.up.ac.za/academic/science

CLIENT: Jeffares & Green (Pty) Ltd

DATE: 28 October 2013

SAMPLES: 5 Samples

YOUR REFERENCE: "CIVILAB SUBCONTRACT TESTING"

PROJECT: MZIMVUBU WATER PROJECT

ANALYSIS: Petrographic investigation of 5 dolerite core samples

Two thin sections from each core were prepared.

Summary:

Macroscopic description: Massive, fine to medium-grained dark grey intrusive igneous rock with a distinct dolerite texture.

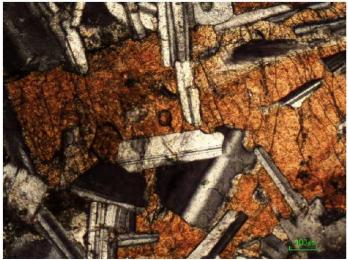
Microscopic description:

When not stated otherwise the microscope pictures were taken with 10x magnification, field of view 1250µm wide and cross polarized illumination.

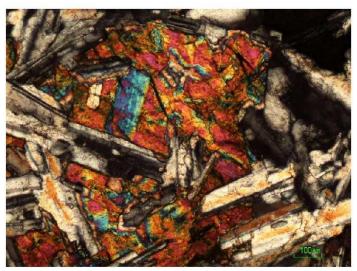
The dolerites appear holocrystalline, relatively fresh, fine to medium grained with an ophitic texture. The main constituent in the thin sections is plagioclase (feldspar) and clinopyroxene (augite). The alteration of the plagioclase to sericite and pyroxene to chlorite (or traces of hornblende and/or possible smectite) seems to be low, approximately around 10%.

The 5 samples (drill cores) are very similar.

Thin Section Description:


Sample name: N1_ 7.7 - 7.82

Constituents: Fine to medium grained euhedral lath-shaped plagioclase crystals (~60%) intergrown by clinopyroxene (~33%). Minor quartz (~2%) and less than 1% opaque minerals (oxides) is present. Secondary minerals (~5%) include chlorite, sericite (white mica) and traces of hornblende.


Grain size data: ≤ 500 ≥ 1000 micron

Description:

The section is dominated by generally lath-shaped medium to fine grained feldspar (plagioclase) showing albite twinning, and subhedral to anhedral clinopyroxene (augite). The laths of plagioclase are randomly orientated and the clinopyroxenes (augite) occupy a more interstitial position to the plagioclase. Some of the irregular shaped augites, exhibit a pink colour indicative of Ti-content. The pyroxenes show alteration to chlorite along cleavage and rims. Some plagioclase grains show secondary alteration to sericite. The opaque minerals (oxides) are irregular in shape. The degree of alteration is low.

N1 7.7 – 7.82: Larger pyroxene crystal encloses the plagioclase laths

N1_7.7 - 7.82: Pyroxene and plagioclase (Thin section little too thick)

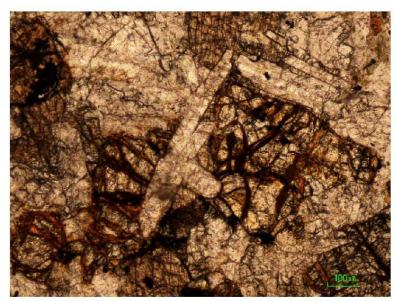
Sample name: N1_ 11.84-12.2

Thin Section Description:

<u>Constituents:</u> Fine to medium grained euhedral lath-shaped plagioclase crystals (~55%) intergrown by clinopyroxene (~30%). Minor quartz (~3%) and about 1% opaque minerals (oxides) is present. Secondary minerals (~10%) include chlorite, sericite (white mica) and traces of hornblende and smectite (swelling clay).

Grain size data: ≤ 500 ≥1000 micron

Description:

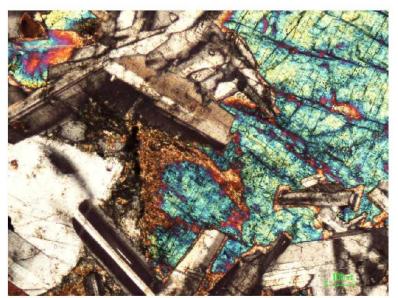

The section is dominated by generally lath-shaped medium to fine grained feldspar (plagioclase) showing polysynthetic twinning, and subhedral to anhedral clinopyroxene (augite). The laths of plagioclase are randomly orientated and the clinopyroxenes (augite) occupy a more interstitial position to the plagioclase. Some of the irregular augite crystals exhibit a pink colour indicative of Ti-content. The pyroxenes show alteration to chlorite and traces of hornblende along cleavage and rims. Some of the plagioclase have been replaced fine-grained white mica (sericite). The few opaques are irregular in shape. The degree of alteration is fairly low.

N1_11.84-12.2: Plagioclase showing polysynthetic twinnig, enclosed by clinoproxene.

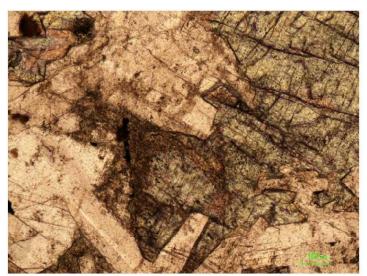
N1_11.84-12.2: Alteration of plagioclase to sericite (white mica)

N1_ 11.84-12.2: Traces of smectite visible along cracks. (10x magnification, plane polarized light)

Sample name: N2_ 12.49-12.61


Thin Section Description:

Constituents: Fine to medium grained euhedral lath-shaped plagioclase crystals (~60%) intergrown by clinopyroxene (~26%). Minor quartz (~2%) and about 1% opaque minerals (oxides) is present. Secondary minerals (~11%) include chlorite, sericite (white mica), possibly traces of smectite (swelling clay).


Grain size data: ≤ 500 ≥ 1000 micron

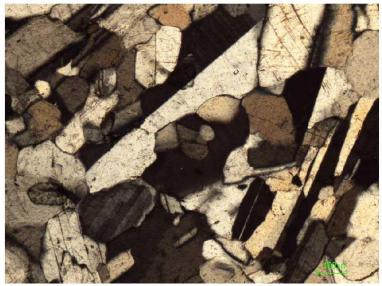
Description:

The section is dominated by generally lath-shaped medium to fine grained feldspar (plagioclase) showing albite twinning, and subhedral to anhedral clinopyroxene (augite). The laths of plagioclase are randomly orientated and the clinopyroxenes (augite) occupy a more interstitial position to the plagioclase. The pyroxenes show alteration to chlorite and possibly traces of smectite along cleavage and rims. A few plagioclase grains show partly alteration to sericite. The opaques are irregular in shape. The degree of alteration is relatively low.

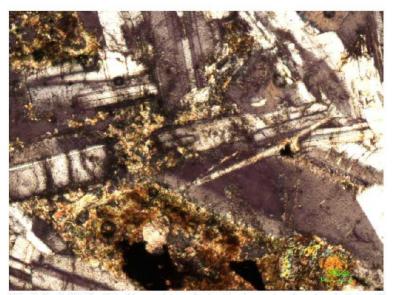
N2_12.49-12.61: Plagioclase (showing albite or polysynthetic twinning) and Augite (showing second order interference colours, typical of clinopyroxenes). The augite crystal in the middle of the picture shows alteration on the edge.

N2_12.49-12.61: Same as above but under plane polarized light. (x10 magnification, field of view 1250μm wide, plane polarized illumination)

Sample name: NL 2/6_2.25-2.47


Thin Section Description:

<u>Constituents:</u> Fine to medium grained euhedral lath-shaped plagioclase crystals (~60%) intergrown by clinopyroxene (~30%). Minor quartz (~3%) and about 1% opaque minerals (oxides) is present. Secondary minerals (~6%) include chlorite and sericite (white mica).


Grain size data: ≤ 500 ≥ 1000 micron

Description:

The section is dominated by generally lath-shaped medium to fine grained feldspar (plagioclase) showing albite twinning, and subhedral to anhedral clinopyroxene (augite). The laths of plagioclase are randomly orientated and the clinopyroxenes (augite) occupy a more interstitial position to the plagioclase. Some of the irregular augites exhibit a pink colour, indicative of Ti-content. The pyroxenes show alteration to chlorite along cleavage and rims. Some plagioclase grains show secondary alteration to sericite. The minor opaque minerals are irregular in shape. The degree of alteration is quite low.

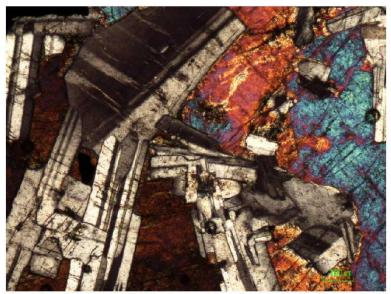
NL 2/6_2.25-2.47: Quartz and Plagioclase

NL 2/6_2.25-2.47: Alteration of plagioclase is clearly visible. Black irregular shaped blobs are opaque minerals (oxides).

Sample name: NL 2/9 _ 4.3-4.58


Thin Section Description:

Constituents: Fine to medium grained euhedral lath-shaped plagioclase crystals (~58%) intergrown by clinopyroxene (~30%). Minor quartz (~4%) and about 1% opaque minerals (oxides) is present. Secondary minerals (~7%) include chlorite and sericite (white mica)


Grain size data: ≤ 500 ≥ 1000 micron

Description:

The section is dominated by generally lath-shaped medium to fine grained feldspar (plagioclase) showing albite twinning, and subhedral to anhedral clinopyroxene (augite). The laths of plagioclase are randomly orientated and the clinopyroxenes (augite) occupy a more interstitial position to the plagioclase. The pyroxenes show alteration to chlorite along cleavage and rims. Some plagioclase grains show secondary alteration to sericite. The opaques are irregular in shape. The degree of alteration is low.

NL 2/9 _ 4.3–4.58: Secondary chlorite, an alteration product, distinguishable by its green colour. (x10 magnification, field of view 1250μm wide, plane polarized illumination)

NL 2/9 _ **4.3–4.58:** Plagioclase with polysynthetic twinning and augite showing interference color typical of second order.

If you have any questions, kindly contact the laboratory.

Analyst: Wiebke Grote

H3

INDICATOR AND STANDARD PROCTOR m/d

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503 E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

Order No.

Client Reference :

2819

Civil Engineering Testing Laboratories

Client : JEFFARES & GREEN CONSULTING ENGINEERS

Address : P O BOX 1109

: SUNNINGHILL

: 2157

Attention : Tom Spiers

Facsimile : 011 807 1607

E-mail : spierst@jgi.co.za

Project : Mzinvubu Water Project

Project No.: 2013-B-2004

Date Received : 23/08/2013

Date Tested : 23/08/2013 - Current

Date Reported : 11/11/2013

Page : 1 of 44

Herewith please find the test report(s) pertaining to the above project. All tests were conducted in accordance with prescribed test method(s). Information herein consists of the following:

Test(s) conducted / Item(s) measured	Qty.	Test Method(s)	Authorized By	Page(s)
Atterberg Limits < 0.425mm	39.000	TMH1 A2, A3, A4	W van Zyl	2-21
Sieve Analysis 0.075mm (Mass Grading)	39.000	TMH1 A1	W van Zyl	2-21
Hydrometer Analysis	39.000	ASTM D422	W van Zyl	2-21
MDD & OMC	4.000	TMH1 A7	W van Zyl	22-25
Relative Density of Soil	4.000	TMH1 A12T	W van Zyl	2, 7, 12, 21
Dispersiveness: Double Hydrometer	11.000	BS1377 Part 5	W van Zyl	11 files, 11
Dispersiveness: Pinhole	2.000	BS1377 Part 5	W van Zyl	pages
Permeability: Falling Head	3.000	KH Head	W van Zyl	1 file, 1page
Oedometer: Standard	2.000	BS1377 Part 6	W van Zyl	2 files, 6 pages
Chloride Content	2.000	Refer to test results	Subcontracted	1 file, 1page
Remaining: 2 x Oedometer, 1 x S.G., 4 x CU Triaxial, 1 x FH Permeability				

Any test results contained in this report and marked with * in the table above are "not SANAS accredited" and are not included in the schedule of accreditation for this laboratory.

Any information contained in this test report pertain only to the areas and/or samples tested. Documents may only be reproduced or published in their full context.

While every care is taken to ensure that all tests are carried out in accordance with recognised standards, neither Civilab (Proprietary) Limited nor its employess shall be liable in any way whatsoever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequences thereof.

All interpretations, Interpolations, Opinions and/or Classifications contained in this report falls outside our scope of accreditation.

The following parameters, where applicable, were excluded from the classification procedure: Chemical modifications, Additional fines, Fractured Faces, Soluble Salts, pH, Conductivity, Coarse Sand Ratio, Durability (COLTO: G4-G9).

The following parameters, where applicable, were assumed: Rock types were assumed to be of an Arenaceous nature with Siliceous cementing material.

Unless otherwise requested or stated, all samples will be discarded after a period of 3 months.

Deviations in Test Methods:

Civilab (Proprietary) Limited. Registration No: 1998/019071/07

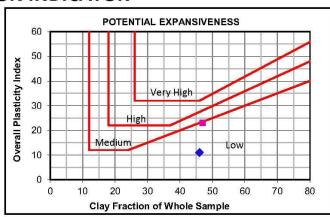
GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

sanas T0062

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503


E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

JEFFARES & GREEN CONSULTING ENGINEERS Client Date Received: 23/08/2013 Mzinvubu Water Project Project Date Reported: 11/11/2013 Project No 2013-B-2004 Page No. 2 of 44

FOUNDATION INDICATOR

Laboratory Number	1 🔷	2
Field Number	C1A	C2
Client Reference		
Depth (m)	0.4-1.0	0.4-2.6
Position		
Coordinates X Y		
Description		
Aditional Information		
Calcrete / Crushed		
Stabilizing Agent		
Moisture Content &	Palativa Dansity-TMH1 I	Metod A12T

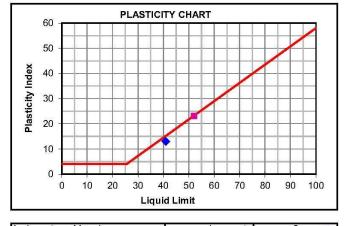
Moisture Content & Relative Density-TMH1 Metod A12T Moisture Content (%)

MOISTAIC OC	JIIICIII (70)		
Relative Density (S.G.)		2.541	
Sieve An	alysis (Wet Prepara	ition) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
D	63.0 mm	100	100
Passing	53.0 mm	100	100
388	37.5 mm	100	100
	26.5 mm	100	100
ge	19.0 mm	100	100
Ita	13.2 mm	99	100
Percentage	4.75 mm	94	100
ē	2.00 mm	90	100
<u> </u>	0.425 mm	05	100

85

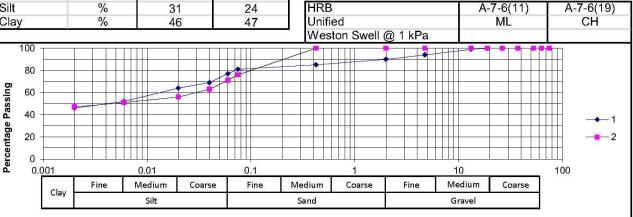
81

100


76

0.24

0.425 mm


0.075 mm

Gradina Modulus

Grading Modulus		U.44	0.24
Hyd	rometer Analysis -	ASTM Method	D422
ē	0.060 mm	77	71
faç ng	0.040 mm	69	63
en	0.020 mm	64	56
Percentage Passing	0.006 mm	52	51
<u>a</u> –	0.002 mm	46	47
Gravel	%	10	0
Sand	%	13	29
Silt	%	31	24
Clay	%	46	47

Laboratory Number		1 🔷	2 🔳
Atterberg L	.imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	41	52
Plasticity Index	%	13	23
Linear Shrinkage	%	9.5	10.5
Overall Pl	%	11	23
	Classific	cations	_

HRB

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

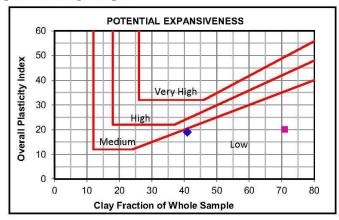
PO Box 82223, Southdale 2135

†Sanas Touceston

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

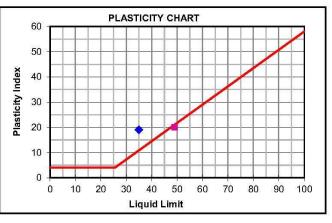
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

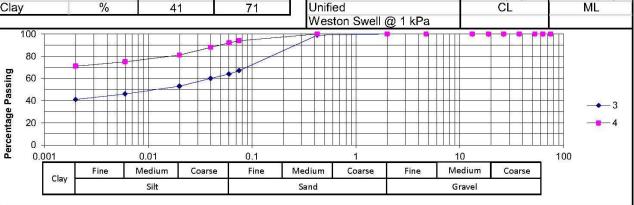
Project No : 2013-B-2004 Page No. : 3 of 44

FOUNDATION INDICATOR


3 🔷	4 \blacksquare
C2A	C4A
	400 - 000
0.5-1.9	0.4-2.1
	C2A

Moisture Content & Relative Density-TMH1 Metod A12T
Moisture Content (%)

Relative Density (S.G.)


Sieve Ana	ılysis (Wet Prepara	tion) - TMH1 N	lethod A1(a)
	75.0 mm	100	100
D)	63.0 mm	100	100
l ii	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
ge	19.0 mm	100	100
Percentage	13.2 mm	100	100
l ë	4.75 mm	100	100
ار ق	2.00 mm	100	100
	0.425 mm	99	100
	0.075 mm	67	94
Grading Mod	dulus	0.34	0.06

Hyd	Irometer Analysis -	ASTM Method	D422
je	0.060 mm	64	92
Percentage Passing	0.040 mm	60	88
en	0.020 mm	53	81
erc Pa	0.006 mm	46	75
፳ _	0.002 mm	41	71
Gravel	%	0	0
Sand	%	36	8
Silt	%	23	21
Clay	%	41	71

Laboratory Number		3 🔷	4
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	35	49
Plasticity Index	%	19	20
Linear Shrinkage	%	9.5	11.5
Overall Pl	%	19	20
	Classific	cations	

A-6(10)

HRB

A-7-6(20)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

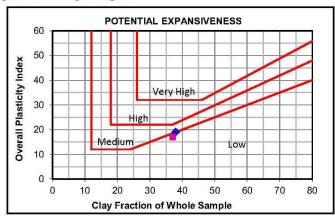
PO Box 82223, Southdale 2135

†Sanas Touces

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

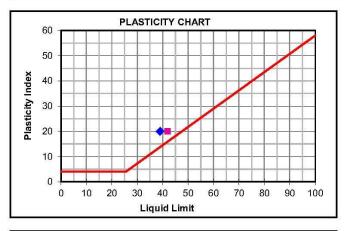
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

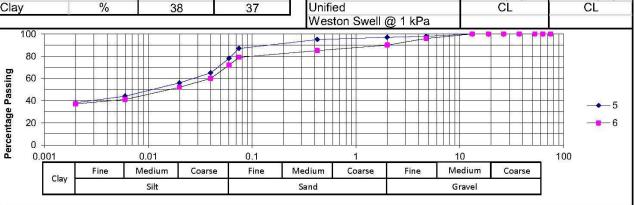
Project No : 2013-B-2004 Page No. : 4 of 44

FOUNDATION INDICATOR


C5 0.6-2.7	C6 0.5-2.3
0.6-2.7	0.5-2.3
0.6-2.7	0.5-2.3
	Density-TMH1

Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)
Relative Density (S.G.)


Sieve An	alysis (Wet Prepara	tion) - TMH1 N	lethod A1(a)
	75.0 mm	100	100
D)	63.0 mm	100	100
ļ Ļ	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
ge	19.0 mm	100	100
Percentage	13.2 mm	100	100
Se	4.75 mm	98	96
ja ja	2.00 mm	97	90
11	0.425 mm	95	85
	0.075 mm	87	79
Grading Mo	dulus	0.21	0.46

Hyd	rometer Analysis -	ASTM Method	D422
ā	0.060 mm	78	72
ුකු ව වි	0.040 mm	65	60
eni	0.020 mm	56	52
Percentage Passing	0.006 mm	44	41
<u>8</u> –	0.002 mm	38	37
Gravel	%	3	10
Sand	%	19	18
Silt	%	40	35
Clay	%	38	37

Laboratory Number		5	6
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	39	42
Plasticity Index	%	20	20
Linear Shrinkage	%	10.0	9.5
Overall PI	%	19	17
	Classific	rations	

A-6(16)

HRB

A-7-6(16)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

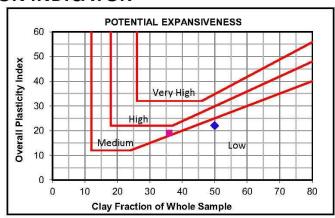
PO Box 82223, Southdale 2135

†Sanas Touces

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

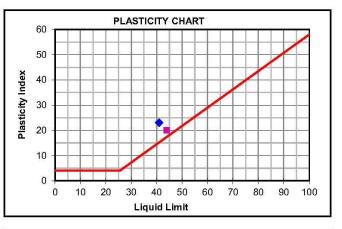
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

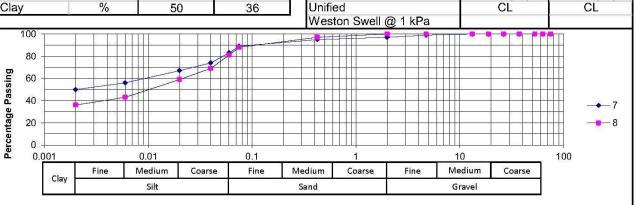
Project No : 2013-B-2004 Page No. : 5 of 44

FOUNDATION INDICATOR


Laboratory Number		7 🔷	8 ■
Field Number		C7	C8
Client Reference		5,000 118	
Depth (m)		0.9-2.9	0.4-2.5
Position			
Coordinates	X Y		
Description			
Aditional Informat	ion		
Calcrete / Crushe	d		
Stabilizing Agent			

Moisture Content & Relative Density-TMH1 Metod A12T
Moisture Content (%)

Moisture Content (%)
Relative Density (S.G.)
Sieve Analysis (Wet Preparation) - TMH1 Method A1(a)


(a)
0
0
0
0
0
0
0
0
0
7
3
5
3

Hyd	Irometer Analysis -	ASTM Method	D422
ā	0.060 mm	83	81
වී ව	0.040 mm	74	69
eni	0.020 mm	67	59
Percentage Passing	0.006 mm	56	43
9 T	0.002 mm	50	36
Gravel	%	3	0
Sand	%	14	19
Silt	%	33	45
Clay	%	50	36

Laboratory Number		7	8 🔳
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	41	44
Plasticity Index	%	23	20
Linear Shrinkage	%	13.5	11.5
Overall Pl	%	22	19
	Classific	cations	•

A-7-6(20)

HRB

A-7-6(19)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

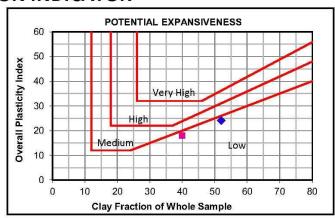
Sanas Fediring Locardary

Civilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No : 2013-B-2004 Page No. : 6 of 44

FOUNDATION INDICATOR

C9 0.5-2.2	C10 0.4-2.1
0.5-2.2	0.4-2.1
0.5-2.2	0.4-2.1
	Density-TMH1



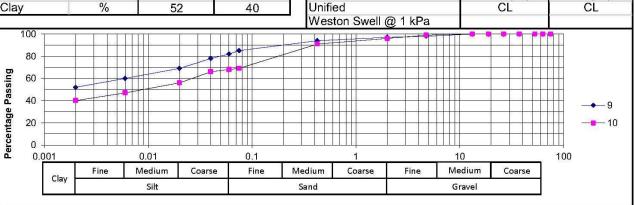
Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)

Sieve An	alysis (Wet Preparat	tion) - TMH1 N	lethod A1(a)
ë.	75.0 mm	100	100
	63.0 mm	100	100
l Ë	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
ge	19.0 mm	100	100
Percentage	13.2 mm	100	100
l Ge	4.75 mm	98	99
ja ja	2.00 mm	97	96
-	0.425 mm	94	91
	0.075 mm	85	69

Hyd	drometer Analysis -	ASTM Method	D422
ā	0.060 mm	82	68
ng fac	0.040 mm	78	66
en	0.020 mm	69	56
Percentage Passing	0.006 mm	60	47
8 –	0.002 mm	52	40
Gravel	%	3	4
Sand	%	15	28
Silt	%	30	28
Clay	%	52	40


0.24

0.44

Grading Modulus

Laboratory Number		9 🔷	10
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	48	37
Plasticity Index	%	26	20
Linear Shrinkage	%	12.5	10.0
Overall PI	%	24	18
	Classific	cations	

A-7-6(20)

HRB

A-6(12)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

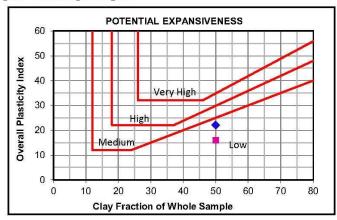
36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

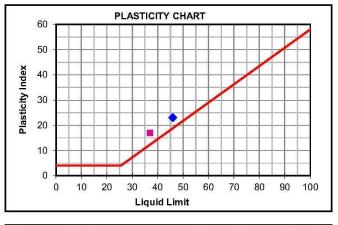

Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No : 2013-B-2004 Page No. : 7 of 44

FOUNDATION INDICATOR

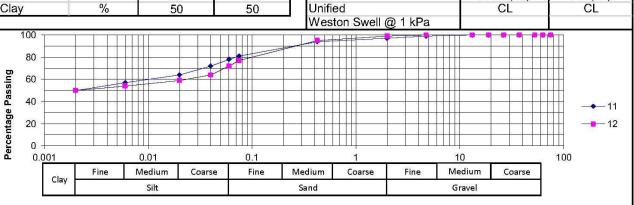
Laboratory Number		12
		C12
е		
	0.4-2.5	0.5-2.6
	Mix C2 + C4A + C7 + C8 + C10	
X Y		
		Reddish Br. Colluvial
		Clayey Sand/
ation		
ned		8
nt		
	e X	e 0.4-2.5 Mix C2 + C4A + C7 + C8 + C10 X Y ation



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.) 2.253


Sieve Analysis (Wet Preparation) - TMH1 Method A1(a)				
	75.0 mm	100	100	
D	63.0 mm	100	100	
ji.	53.0 mm	100	100	
Passing	37.5 mm	100	100	
	26.5 mm	100	100	
Percentage	19.0 mm	100	100	
l ta	13.2 mm	100	100	
l ē	4.75 mm	99	100	
e e	2.00 mm	97	99	
<u> </u>	0.425 mm	94	95	
	0.075 mm	81	77	
Grading Modulus		0.28	0.29	

		0.20	0.20
Hyd	rometer Analysis -	ASTM Method	D422
<u>e</u>	0.060 mm	78	72
ල් සි	0.040 mm	72	64
en	0.020 mm	64	59
ercentage Passing	0.006 mm	57	54
8 –	0.002 mm	50	50
Gravel	%	3	1
Sand	%	19	27
Silt	%	28	22
Clay	%	50	50

Laboratory Number		11 🔷	12
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	46	37
Plasticity Index	%	23	17
Linear Shrinkage	%	11.5	10.0
Overall Pl	%	22	16
	Classifi	cations	

A-7-6(19)

HRB

A-6(12)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

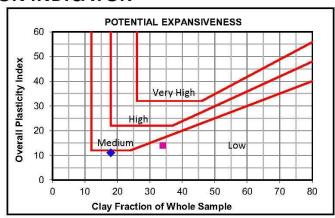
Sanas Fediring Locardary

Civilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

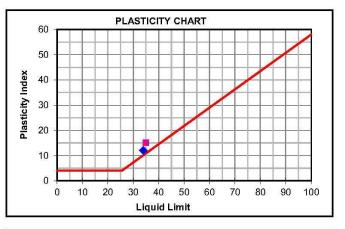
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

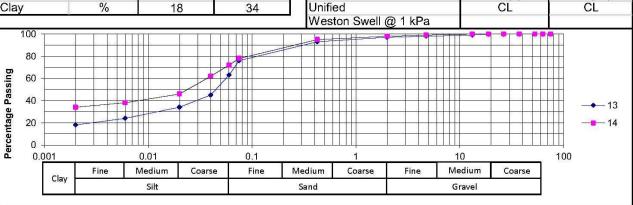
Project No : 2013-B-2004 Page No. : 8 of 44

FOUNDATION INDICATOR


13 🔷	14
C15	C16
0.4-1.8	0.5-1.6
	C15

Moisture Content & Relative Density-TMH1 Metod A12T
Moisture Content (%)

Moisture Content (%)
Relative Density (S.G.)


Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
C)	63.0 mm	100	100
Ĭ.	53.0 mm	100	100
Passing	37.5 mm	100	100
₽,	26.5 mm	100	100
Percentage	19.0 mm	100	100
擂	13.2 mm	99	100
Se	4.75 mm	98	99
ē	2.00 mm	97	98
ш	0.425 mm	93	95
	0.075 mm	76	78
Grading Mo	odulus	0.34	0.29

Hyd	Irometer Analysis -	ASTM Method	D422
ā	0.060 mm	63	72
වී ව	0.040 mm	45	62
eni	0.020 mm	34	46
Percentage Passing	0.006 mm	24	38
9 –	0.002 mm	18	34
Gravel	%	3	2
Sand	%	34	26
Silt	%	45	38
Clay	%	18	34

Laboratory Number		13	14
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	34	35
Plasticity Index	%	12	15
Linear Shrinkage	%	7.5	7.5
Overall Pl	%	11	14
	Classific	rations	

A-6(8)

HRB

A-6(11)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

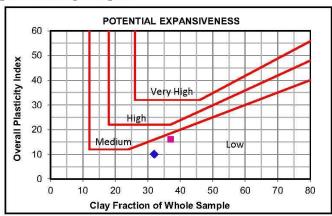
36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Sanas Fediring Locardary

Civilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503


E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

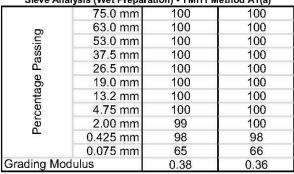
Civil Engineering Testing Laboratories

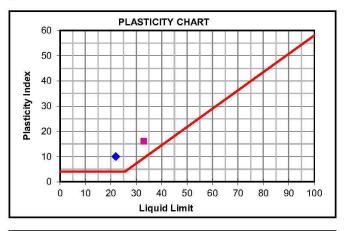
Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013
Project : Mzinvubu Water Project Date Reported: 11/11/2013
Project No : 2013-B-2004 Page No. : 9 of 44

FOUNDATION INDICATOR

Laboratory Nun	nber	15 🔷	16
Field Number		C18	C20
Client Reference	e		V.V.81, 1080
Depth (m)		0.3-2.9	0.3-2.2
Position			
Coordinates	X Y		
Description			
Aditional Inform	ation		
Calcrete / Crushed			
Stabilizing Ager	nt		
Moisture Con	tent & Relat	tive Density-TMH1 N	letod A12T

Moisture Content & Relative Density-TMH1 Metod A12T

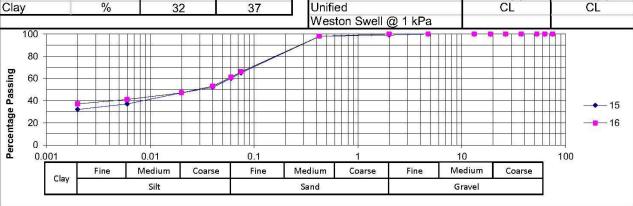

Moisture Content (%)


Relative Density (S.G.)

Sieve Analysis (Wet Preparation) - TMH1 Method A1(a)

75.0 mm 100 100

63.0 mm 100 100



	V 6		
Hyd	Irometer Analysis -	ASTM Method	D422
je	0.060 mm	60	61
ු දුරු	0.040 mm	52	53
en	0.020 mm	47	47
Percentage Passing	0.006 mm	37	41
<u> </u>	0.002 mm	32	37
Gravel	%	1	0
Sand	%	39	39
Silt	%	28	24
Clay	%	32	37

Laboratory Number		15 🔷	16
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	22	33
Plasticity Index	%	10	16
Linear Shrinkage	%	5.5	8.0
Overall Pl	%	10	16
	Classific	ations	

A-4(3)

HRB

A-6(8)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

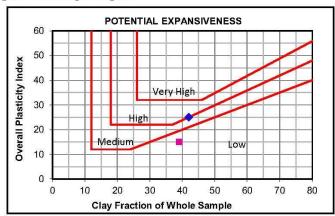
†Sanas Feating Locardon T0062

Civilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

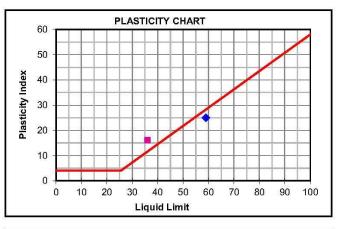
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

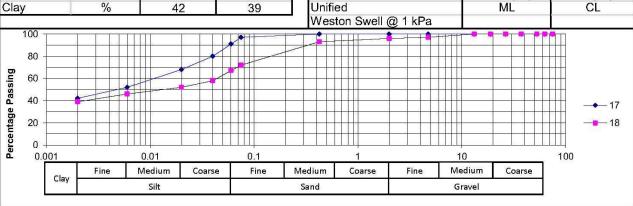
Project No : 2013-B-2004 Page No. : 10 of 44

FOUNDATION INDICATOR


Laboratory Number	17 🔷	18
Field Number	C22	C23
Client Reference		10000 - 1000
Depth (m)	0.3-2.6	0.25-1.7
Position		
Coordinates X		
Description		
Aditional Information		
Calcrete / Crushed		
Stabilizing Agent		

Moisture Content & Relative Density-TMH1 Metod A12T
Moisture Content (%)

Relative Density (Sieve Analysis		tion) TMH1 M	othod A1(a)
	75 0 mm	100	400


Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
ë.	75.0 mm	100	100
5 0	63.0 mm	100	100
Ĭ.	53.0 mm	100	100
Passing	37.5 mm	100	100
9,	26.5 mm	100	100
ge	19.0 mm	100	100
茸	13.2 mm	100	100
Percentage	4.75 mm	100	97
ē	2.00 mm	100	96
ш	0.425 mm	100	93
	0.075 mm	97	72
Grading Mo	odulus	0.03	0.39
144	al constant and American broad on	ACTU M. Alexander	D400

Hyd	drometer Analysis -	ASTM Method	D422
e	0.060 mm	91	67
ු දුර	0.040 mm	80	58
en	0.020 mm	68	52
Percentage Passing	0.006 mm	52	46
<u>a</u> _	0.002 mm	42	39
Gravel	%	0	4
Sand	%	9	29
Silt	%	49	28
Clay	%	42	39

Laboratory Number		17 🔷	18
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	59	36
Plasticity Index	%	25	16
Linear Shrinkage	%	10.5	8.5
Overall PI	%	25	15
	Classifi	cations	

A-7-5(20)

HRB

A-6(10)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

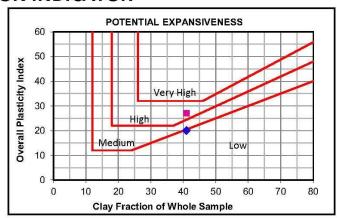
Sanas Fediring Locardary

Civilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

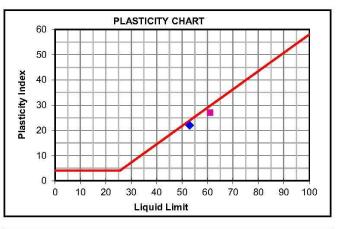
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

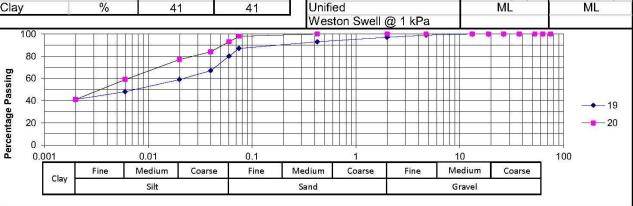
Project No : 2013-B-2004 Page No. : 11 of 44

FOUNDATION INDICATOR


19 🔷	20
C25	C28
0.3-0.9	0.5-2.6
	C25

Moisture Content & Relative Density-TMH1 Metod A12T
Moisture Content (%)

Relative Density (S.G.)


Sieve Ana	ılysis (Wet Prepara	tion) - TMH1 M	lethod A1(a)
5	75.0 mm	100	100
	63.0 mm	100	100
l ië	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
ge	19.0 mm	100	100
l at	13.2 mm	100	100
l ë	4.75 mm	99	100
Percentage	2.00 mm	97	100
11	0.425 mm	93	100
	0.075 mm	87	98
Grading Mod	dulus	0.23	0.02

rometer Analysis -	ASTM Method	D422
0.060 mm	80	93
0.040 mm	67	84
0.020 mm	59	77
0.006 mm	48	59
0.002 mm	41	41
%	3	0
%	17	7
%	39	52
%	41	41
	0.060 mm 0.040 mm 0.020 mm 0.006 mm 0.002 mm %	0.040 mm 67 0.020 mm 59 0.006 mm 48 0.002 mm 41 % 3 % 17 % 39

Laboratory Number		19 🔷	20
Atterberg L	imits - TN	IH1 Method A2, A3 &	§ A4
Liquid Limit	%	53	61
Plasticity Index	%	22	27
Linear Shrinkage	%	10.5	15.5
Overall Pl	%	20	27
	Class	ifications	

A-7-5(20)

HRB

A-7-5(20)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

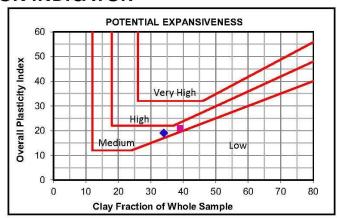
36 Fourth Street, Booysens Reserve, Johannesburg 2091

E-mail: jhb@civilab.co.za•Website: www.civilab.co.za

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

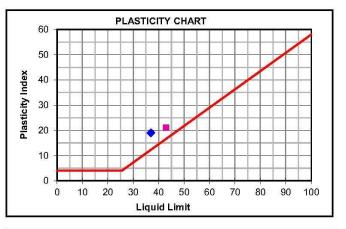

Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No : 2013-B-2004 Page No. : 12 of 44

FOUNDATION INDICATOR

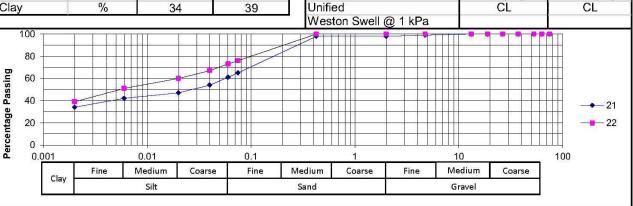
Laboratory Number		21 🔷	22
Field Number		C30	
Client Reference	е		
Depth (m)		0.5-2.1	s -
Position			Mix C12 + C18 + C22 + C28 + C30
Coordinates	X Y		
Description			
Aditional Inform	ation		
Calcrete / Crush	7377		
Stabilizing Ager	ıτ		


Moisture Content & Relative Density-IMM1 Metod A121

Moisture Content (%)

Relative Density (S.G.)

2.657


Sieve Analysis (Wet Preparation) - TMH1 Method A1(a) 75.0 mm 100 100 63.0 mm 100 100 Percentage Passing 100 100 53.0 mm 37.5 mm 100 100 26.5 mm 100 100 100 19.0 mm 100 13.2 mm 100 100 4.75 mm 99 100 98 100 2.00 mm 0.425 mm 98 100 0.075 mm 65 76 Grading Modulus 0.39 0.24

		0100	
Hyd	Irometer Analysis -	ASTM Method	D422
<u>e</u>	0.060 mm	61	73
වී වූ	0.040 mm	54	67
en	0.020 mm	47	60
Percentage Passing	0.006 mm	42	51
<u> </u>	0.002 mm	34	39
Gravel	%	2	0
Sand	%	37	27
Silt	%	27	34
Clay	%	34	39

Laboratory Number		21 🔷	22
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	37	43
Plasticity Index	%	19	21
Linear Shrinkage	%	8.0	11.5
Overall Pl	%	19	21
	Classific	ations	

A-6(10)

HRB

A-7-6(16)

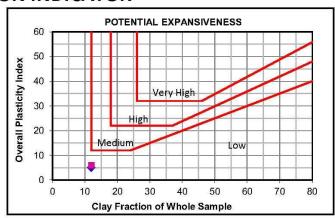
GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

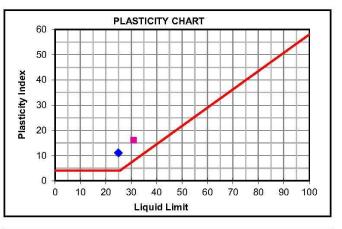
PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503



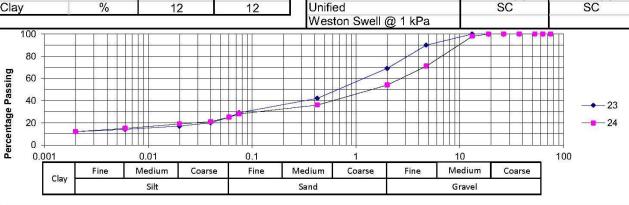
Civil Engineering Testing Laboratories

JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013 Client 11/11/2013 Project Mzinvubu Water Project Date Reported: Project No 2013-B-2004 Page No. 13 of 44


FOUNDATION INDICATOR

F5 F6 0.25-1.20 0.4-1.2
0.25-1.20 0.4-1.2
0.25-1.20 0.4-1.2
Veathered Mudrock/ Sandstone
Sandstone

Moisture Content (%) Relative Density (S.G.)


Sieve An	alysis (Wet Preparat	tion) - TMH1 N	lethod A1(a)
	75.0 mm	100	100
	63.0 mm	100	100
Lig.	53.0 mm	100	100
Passing	37.5 mm	100	100
2000	26.5 mm	100	100
ge	19.0 mm	100	100
l ta	13.2 mm	100	98
l ē	4.75 mm	90	71
Percentage	2.00 mm	69	54
ш.	0.425 mm	42	36
	0.075 mm	29	28
Grading Mo	dulus	1.6	1.82

		11.1.2	
Hyd	Irometer Analysis -	ASTM Method	D422
e e	0.060 mm	25	25
taç ng	0.040 mm	20	21
en	0.020 mm	17	19
Percentage Passing	0.006 mm	14	15
9 I	0.002 mm	12	12
Gravel	%	31	46
Sand	%	44	29
Silt	%	13	13
Clay	%	12	12

Laboratory Number		23	24
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	25	31
Plasticity Index	%	11	16
Linear Shrinkage	%	5.5	6.5
Overall PI	%	5	6
1	Classific	ations	

A-2-6(0)

HRB

A-2-6(1)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

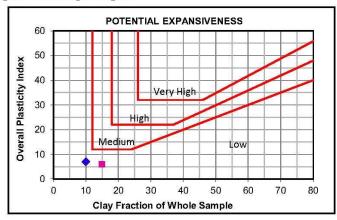
36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

sanas T0062

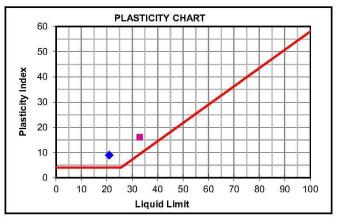
ivilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503


E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

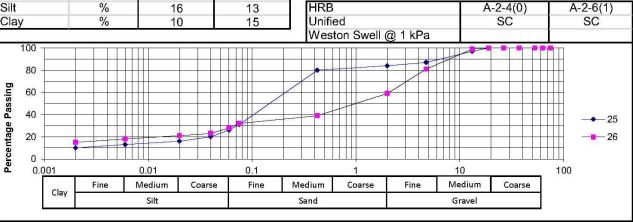
Civil Engineering Testing Laboratories

JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013 Client 11/11/2013 Project Mzinvubu Water Project Date Reported: Project No 2013-B-2004 Page No. 14 of 44


FOUNDATION INDICATOR

25 🔷	26
F8	F10
	0
0.6-1.6	Channel 0.9m
	F8

Moisture Content (%) Relative Density (S.G.)


Sieve Ana	lysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
	63.0 mm	100	100
l ii	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
Percentage	19.0 mm	100	100
l atr	13.2 mm	97	99
l e	4.75 mm	87	81
Je l	2.00 mm	84	59
	0.425 mm	80	39
	0.075 mm	31	32
Grading Mod	lulus	1.05	1.7

Hyd	drometer Analysis -	ASTM Method	D422
e	0.060 mm	26	28
taç ng	0.040 mm	20	23
en	0.020 mm	16	21
Percentage Passing	0.006 mm	13	18
~ _	0.002 mm	10	15
Gravel	%	16	41
Sand	%	58	31
Silt	%	16	13
Clay	%	10	15

Laboratory Number		25	26
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	21	33
Plasticity Index	%	9	16
Linear Shrinkage	%	3.5	8.5
Overall Pl	%	7	6
	Classific	cations	

A-2-4(0)

HRB

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

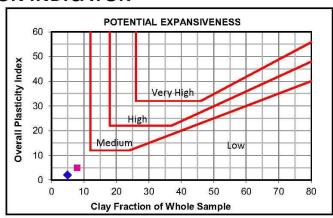
PO Box 82223, Southdale 2135

†Sanas Touces

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

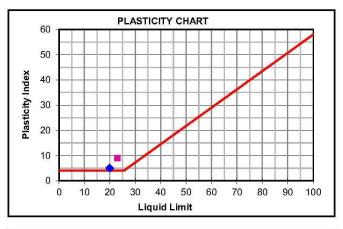

Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No : 2013-B-2004 Page No. : 15 of 44

FOUNDATION INDICATOR

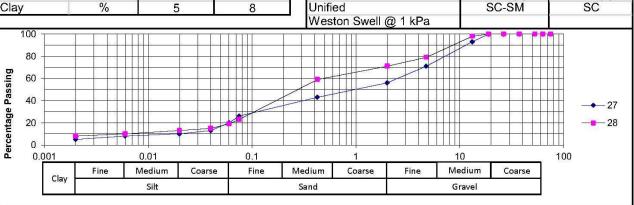
Laboratory Number		27 🔷	28
Field Number		F12	F13
Client Reference	е		
Depth (m)		0.3-0.6	0.25-0.95
Position			
Coordinates	Х		
Coordinates	Υ		
Description			
Aditional Inform	ation		
Calcrete / Crush			
Stabilizing Ager	nt		



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)


Sieve Ana	ılysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
_ n	63.0 mm	100	100
l ii	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
Percentage	19.0 mm	100	100
l da	13.2 mm	93	98
l ë	4.75 mm	71	79
اوّ ا	2.00 mm	56	71
11	0.425 mm	43	59
	0.075 mm	26	23
Grading Mod	dulus	1.75	1.47

Hyd	Irometer Analysis -	ASTM Method	D422
ā	0.060 mm	20	19
ල සූ ව	0.040 mm	13	15
eni	0.020 mm	10	13
Percentage Passing	0.006 mm	8	10
<u> </u>	0.002 mm	5	8
Gravel	%	44	29
Sand	%	36	52
Silt	%	15	11
Clay	%	5	8

Laboratory Number		27 🔷	28
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	20	23
Plasticity Index	%	5	9
Linear Shrinkage	%	3.5	4.0
Overall PI	%	2	5
<u> </u>	Classific	rations	

A-2-4(0)

HRB

A-2-4(0)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

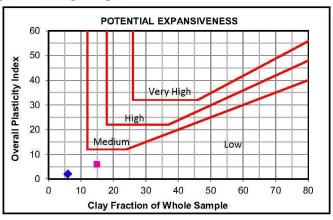
Sanas Fediring Locardary

Civilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

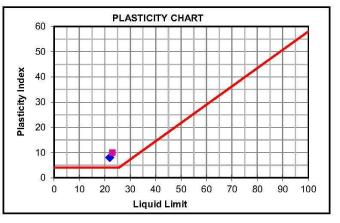
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

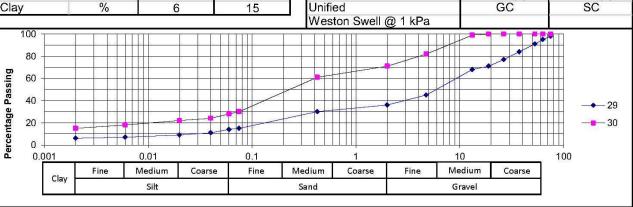
Project No : 2013-B-2004 Page No. : 16 of 44

FOUNDATION INDICATOR


Laboratory Number		29 🔷	30
Field Number		20-207	F25
Client Reference	е		
Depth (m)		-	0.9-1.2
Position		Mixed Sample F5 + F8 + F10	
Coordinates	X		
Description			Weathered Mudrock/ Sadstone
Aditional Inform	ation		
Calcrete / Crush Stabilizing Agen			

Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)
Relative Density (S.G.)


Sieve Ana	ılysis (Wet Prepar	ation) - TMH1 M	ethod A1(a)
	75.0 mm	98	100
D)	63.0 mm	95	100
ļ iš	53.0 mm	91	100
Passing	37.5 mm	84	100
<u> </u>	26.5 mm	77	100
Percentage	19.0 mm	71	100
l a	13.2 mm	68	99
- B	4.75 mm	45	82
မြို	2.00 mm	36	71
<u>114</u> 7	0.425 mm	30	61
	0.075 mm	15	30
Grading Mod	dulus	2.19	1.38

Hyd	lrometer Analysis -	ASTM Method	D422
<u>o</u>	0.060 mm	14	28
raç ng	0.040 mm	11	24
ent	0.020 mm	9	22
Percentage Passing	0.006 mm	7	18
9 –	0.002 mm	6	15
Gravel	%	64	29
Sand	%	64 22	43
Silt	%	8	13
Clay	%	6	15

Laboratory Number		29 🔷	30
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	22	23
Plasticity Index	%	8	10
Linear Shrinkage	%	4.0	4.0
Overall Pl	%	2	6
	Classific	cations	

A-2-4(0)

HRB

A-2-4(0)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

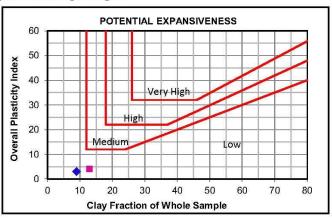
36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Sanas Fediring Locardary

Civilab

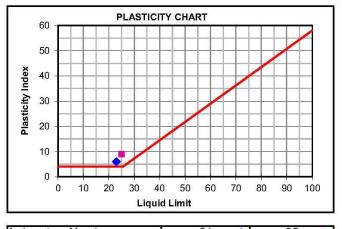
Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503


E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

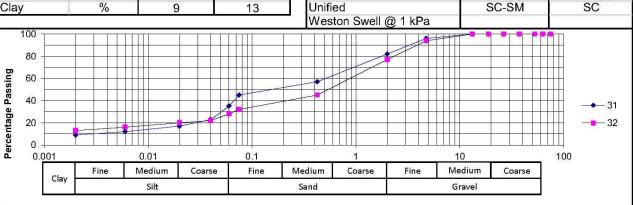
Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013
Project : Mzinvubu Water Project Date Reported: 11/11/2013
Project No : 2013-B-2004 Page No. : 17 of 44

FOUNDATION INDICATOR


31 🔷	32
F28	F29
0.00-1.5	0.00-0.6
	Weathered Mudrock / Sandstone
	F28

Moisture Content & Relative Density-TMH1 Metod A12T
Moisture Content (%)

Relative Density (S.G.)


Sieve Analysis (Wet Preparation) - TMH1 Method A1(a)			
-	75.0 mm	100	100
	63.0 mm	100	100
l iĝ	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
Percentage	19.0 mm	100	100
l ta	13.2 mm	100	100
l ë	4.75 mm	96	94
ခြွ	2.00 mm	82	77
	0.425 mm	57	45
	0.075 mm	45	32
Grading Modulus		1.16	1.46

Hydrometer Analysis - ASTM Method D422			
ā	0.060 mm	35	28
Percentage Passing	0.040 mm	23	22
eni	0.020 mm	17	20
5 8	0.006 mm	12	16
<u> </u>	0.002 mm	9	13
Gravel	%	18	23
Sand	%	47	49
Silt	%	26	15
Clay	%	9	13

Laboratory Number		31 🔷	32
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	23	25
Plasticity Index	%	6	9
Linear Shrinkage	%	4.0	6.0
Overall Pl	%	3	4
	Classific	eations	

A-4(0)

HRB

A-2-4(0)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

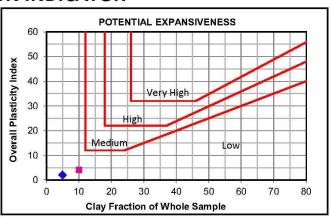
PO Box 82223, Southdale 2135

†Sanas Touces

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

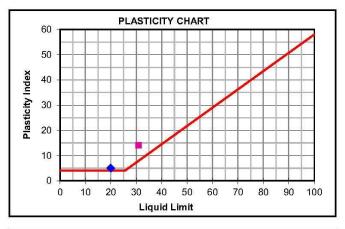
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

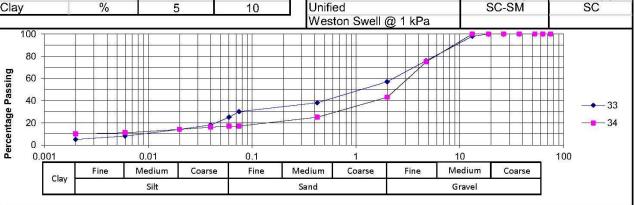
Project No : 2013-B-2004 Page No. : 18 of 44

FOUNDATION INDICATOR


Laboratory Number	33 •	34
Field Number	F31	F33
Client Reference		
Depth (m)	0.4-1.0	0.4-1.0
Position		
Coordinates	,	
Description		Weathered Mudrock/ Sandstone
Aditional Informatio	1	
Calcrete / Crushed		
Stabilizing Agent		

Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)
Relative Density (S.G.)


Sieve Ana	lysis (Wet Prepara	tion) - TMH1 M	lethod A1(a)
	75.0 mm	100	100
	63.0 mm	100	100
l ië	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
Percentage	19.0 mm	100	100
l at	13.2 mm	98	100
l ë	4.75 mm	76	75
Je.	2.00 mm	57	43
	0.425 mm	38	25
	0.075 mm	30	17
Grading Modulus		1.75	2.15

Hydrometer Analysis - ASTM Method D422			
ā	0.060 mm	25	17
Percentage Passing	0.040 mm	18	16
	0.020 mm	14	14
ညီ အ	0.006 mm	8	11
<u> </u>	0.002 mm	5	10
Gravel	%	43	57
Sand	%	32	26
Silt	%	20	7
Clay	%	5	10

Laboratory Number		33 🔷	34
Atterberg L	imits - TN	IH1 Method A2, A3 8	\$ A4
Liquid Limit	%	20	31
Plasticity Index	%	5	14
Linear Shrinkage	%	3.5	7.5
Overall PI	%	2	4
	Classi	fications	

A-2-4(0)

HRB

A-2-6(0)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

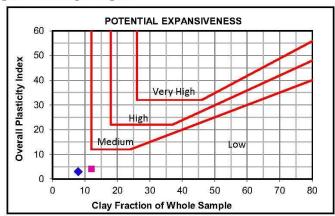
36 Fourth Street, Booysens Reserve, Johannesburg 2091

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

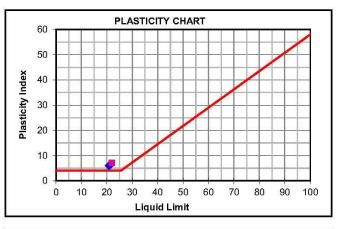

Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No : 2013-B-2004 Page No. : 19 of 44

FOUNDATION INDICATOR

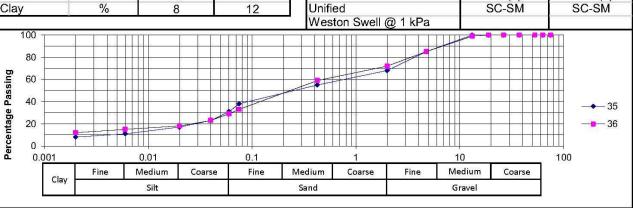
36
F37
0.0-1.5
1



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)


	- / · / · ·		
Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
5 0	63.0 mm	100	100
iii	53.0 mm	100	100
Passing	37.5 mm	100	100
24000	26.5 mm	100	100
ge	19.0 mm	100	100
Percentage	13.2 mm	100	99
Cel Cel	4.75 mm	85	85
er	2.00 mm	68	72
112	0.425 mm	55	59
	0.075 mm	38	33
Grading Mo	odulus	1.39	1.36

Hyd	lrometer Analysis -	ASTM Method	D422
ō	0.060 mm	31	29
් සිර වේ වි	0.040 mm	23	23
eni	0.020 mm	17	18
Percentage Passing	0.006 mm	11	15
PR 1	0.002 mm	8	12
Gravel	%	32	28
Sand	%	37	43
Silt	%	23	17
Clay	%	8	12

Laboratory Number		35 🔷	36
Atterberg L	imits - TM	H1 Method A2, A3	& A4
Liquid Limit	%	21	22
Plasticity Index	%	6	7
Linear Shrinkage	%	4.0	4.0
Overall Pl	%	3	4
	Classi	fications	

A-4(0)

HRB

A-2-4(0)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

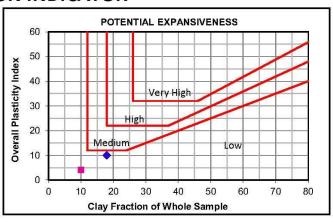
PO Box 82223, Southdale 2135

†Sanas Touces

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

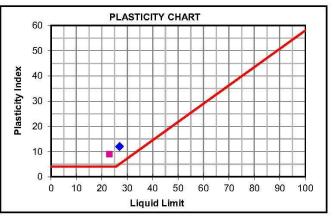
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

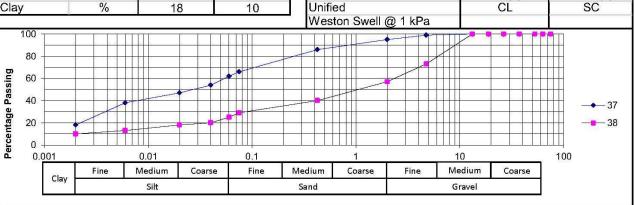
Project No : 2013-B-2004 Page No. : 20 of 44

FOUNDATION INDICATOR


nber	37 🔷	38
	F37A	F39
ce		
	Channel	0.2-1.0
X		
T		Weathered Mudrock/ Sandstone
nation		
237		
	Y nation hed	F37A Ce Channel X Y

Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)
Relative Density (S.G.)


Sieve Ana	lysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
D D	63.0 mm	100	100
l ië	53.0 mm	100	100
Passing	37.5 mm	100	100
	26.5 mm	100	100
Percentage	19.0 mm	100	100
l ata	13.2 mm	100	100
l ë	4.75 mm	99	73
Je J	2.00 mm	95	57
LL.	0.425 mm	86	40
	0.075 mm	66	29
Grading Mod	dulus	0.53	1.74

Hyd	Irometer Analysis -	ASTM Method	D422
<u>o</u>	0.060 mm	62	25
ු දිර	0.040 mm	54	20
en	0.020 mm	47	18
Percentage Passing	0.006 mm	38	13
<u> </u>	0.002 mm	18	10
Gravel	%	5	43
Sand	%	33	32
Silt	%	44	15
Clay	%	18	10

Laboratory Number		37 🔷	38
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	27	23
Plasticity Index	%	12	9
Linear Shrinkage	%	6.0	5.5
Overall PI	%	10	4
	Classific	cations	

A-6(5)

HRB

A-2-4(0)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

T0062

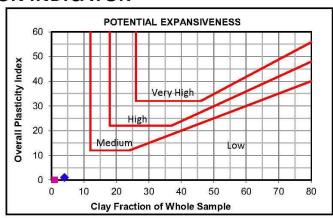
sanas

Civilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

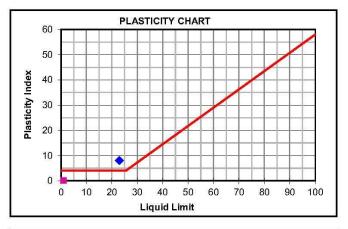
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 23/08/2013

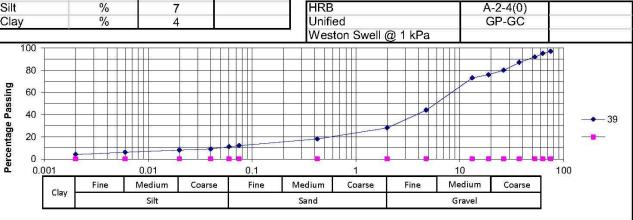
Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No : 2013-B-2004 Page No. : 21 of 44

FOUNDATION INDICATOR


Laboratory Number		39 🔷	
Field Number			
Client Reference			
Depth (m)		v -	
Position		Mix F25 + F29 + F34 + F37 + F39	
Coordinates	X Y		
Description			
Aditional Informa	tion		
Calcrete / Crushe	ed		
Stabilizing Agent			

Moisture Content & Relative Density-TMH1 Metod A12T


Moisture Content (%)
Relative Density (S.G.)
2.717

Sieve An	alysis (Wet Prepara	tion) - TMH1 Met	hod A1(a)
÷	75.0 mm	97	
CD)	63.0 mm	95	
, ii	53.0 mm	92	
ass	37.5 mm	87	
Percentage Passing	26.5 mm	80	
ge	19.0 mm	76	
Ita	13.2 mm	73	
Ce.	4.75 mm	44	
ja Ja	2.00 mm	28	
11	0.425 mm	18	
	0.075 mm	12	
Grading Mo	dulus	2.42	

frometer Analysis -	ASTM Method D	422
0.060 mm	11	
0.040 mm	9	
0.020 mm	8	
0.006 mm	6	
0.002 mm	4	
%	72	
%	17	
%	7	
%	4	
	0.060 mm 0.040 mm 0.020 mm 0.006 mm 0.002 mm %	0.040 mm 9 0.020 mm 8 0.006 mm 6 0.002 mm 4 % 72 % 17 % 7

Laboratory Number		39	
Atterberg L	imits - TMH	1 Method A2, A	3 & A4
Liquid Limit	%	23	
Plasticity Index	%	8	
Linear Shrinkage	%	5.5	
Overall Pl	%	1	
	Classific	ations	•

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

ronas T0062

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

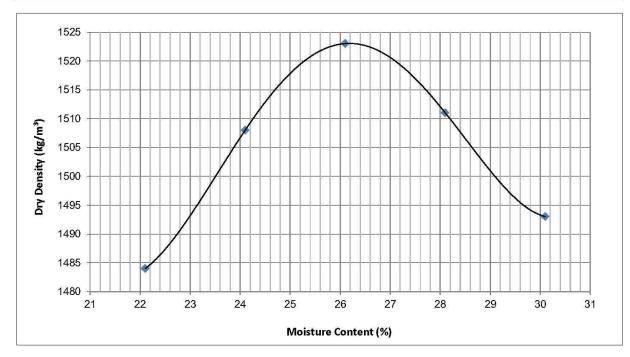
Client : JEFFARES & GREEN CONSULTING EN Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No: 2013-B-2004 Page No. : 22 of 44

MOISTURE DENSITY RELATIONSHIP

Laboratory Number	•	11			
Field Number		Mix C2+C4A+C7+C8+C10			
Client Reference					
Depth (m)		0.4-2.5			
Position					
Coordinates	X				
Coordinates	Υ				
Description					
Additional Informati	ion				
Calcrete / Crushed					
Stabilizing Agent					


Maximum Dry Density & Optimum Moisture Content - TMH1 Method A7

Compactive Effort: Standard Proctor

Dry Density kg/m³ 1484 1508 1523 1511 1493

	O 8 1981						i i
Moisture Content	%	22.1	24.1	26.1	28.1	30.1	

Max. Dry Density	kg/m³	1523
Optimum Moisture	%	26.2

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

†Sanas tedro locoulos T0062

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

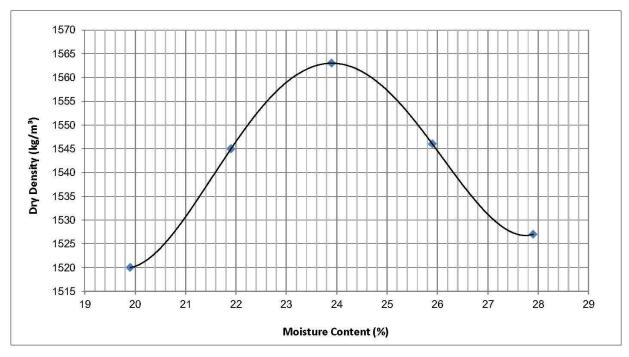
E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Client : JEFFARES & GREEN CONSULTING EN Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No: 2013-B-2004 Page No. : 23 of 44


MOISTURE DENSITY RELATIONSHIP

Laboratory Number	2	22
Field Number		Mix Sample C12+C18+C22+C28+C30
Client Reference		
Depth (m)		-
Position		
Coordinates	X	
Description		
Additional Informati	on	
Calcrete / Crushed		
Stabilizing Agent		

Maximum Dry Density & Optimum Moisture Content - TMH1 Method A7

Compactive Effort:				Standard	Proctor		
Dry Density	kg/m³	1520	1545	1563	1546	1527	
Moisture Content	%	19.9	21.9	23.9	25.9	27.9	

Max. Dry Density	kg/m³	1563
Optimum Moisture	%	23.9

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Compactive Effort:

†Sanas Feding Loboratory

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Client : JEFFARES & GREEN CONSULTING EN Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No: 2013-B-2004 Page No. : 24 of 44

MOISTURE DENSITY RELATIONSHIP


Laboratory Number	•	29
Field Number		Mix Sample F5+F8+F10
Client Reference		***
Depth (m)		-
Position		
Coordinates	X	
Cooldinates	Υ	
Description		
Additional Informat	ion	
Calcrete / Crushed		
Stabilizing Agent		

Maximum Dry Density & Optimum Moisture Content - TMH1 Method A7

Standard Proctor

Terror							
Dry Density	kg/m³	2039	2050	2056	2027	1983	
Moisture Content	%	7 1	9.1	11 1	13.1	151	

Max. Dry Density	kg/m³	2057
Optimum Moisture	%	10.5

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

†Sanas Touceston

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

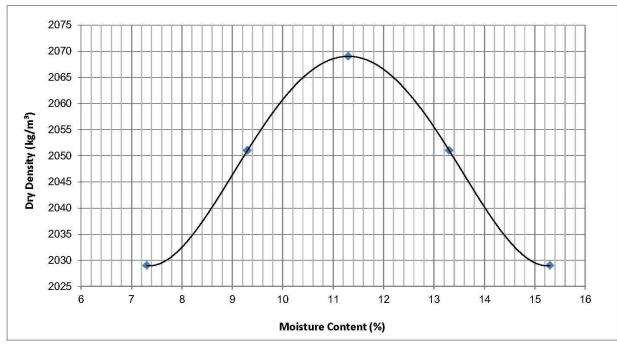
E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Client : JEFFARES & GREEN CONSULTING EN Date Received: 23/08/2013

Project : Mzinvubu Water Project Date Reported: 11/11/2013

Project No: 2013-B-2004 Page No. : 25 of 44


MOISTURE DENSITY RELATIONSHIP

Laboratory Number	Ť	39
Field Number		Mix Sample F25+F29+F34+F37+F39
Client Reference		
Depth (m)		-
Position		
Coordinates	Х	
Coordinates	Υ	
Description		
Additional Informat	ion	
Calcrete / Crushed		
Stabilizing Agent		

Maximum Dry Density & Optimum Moisture Content - TMH1 Method A7

Compactive Effort:			Standard Proctor				
Dry Density	kg/m³	2029	2051	2069	2051	2029	
Moisture Content	%	73	93	113	13.3	153	

Max. Dry Density	kg/m³	2069
Optimum Moisture	%	11.3

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

2819

Client JEFFARES & GREEN CONSULTING ENGINEERS

Address P O BOX 1109

SUNNINGHILL

2157

Attention Date Received 07/10/2013

Facsimile • 011 807 1607 Date Tested 07/10/2013 - 29/11/2013

E-mail chettyn@jgi.co.za Date Reported 03/12/2013

Project Mzimvubu Water Project

Project No. : 2013-B-2246

> 1 of 22 Page

Client Reference :

Order No.

Herewith please find the test report(s) pertaining to the above project. All tests were conducted in accordance with prescribed test method(s). Information herein consists of the following:

Test(s) conducted / Item(s) measured	Qty.	Test Method(s)	Authorized By	Page(s)
Atterberg Limits < 0.425mm	6.000	TMH1 A2, A3, A4	J Marques	2-4
Sieve Analysis 0.075mm (Mass Grading)	6.000	TMH1 A1	J Marques	2-4
Hydrometer Analysis	6.000	ASTM D422	J Marques	2-4
Relative Density	2.000	TMH1:A12T	J Marques	Incl. in CU
Consolidated Undrained Triaxial*	2.000	BS 1377 Part 8	J Marques	2 Files, 11 Pages
Oedometer: Standard Consolidation*	2.000	BS 1377 Part 5	J Marques	2 Files, 6 Pages
Permeability: Falling Head*	2.000	KH Head	J Marques	1 File, 1 Page

Any test results contained in this report and marked with * in the table above are "not SANAS accredited" and are not included in the schedule of accreditation for this laboratory

Any information contained in this test report pertain only to the areas and/or samples tested. Documents may only be reproduced or published in their full context.

While every care is taken to ensure that all tests are carried out in accordance with recognised standards, neither Civilab (Proprietary) Limited nor its employess shall be liable in any way whatsoever for any error made in the execution or reporting of tests or any erroneous conclusions drawn therefrom or for any consequences thereof.

All interpretations, Interpolations, Opinions and/or Classifications contained in this report falls outside our scope of accreditation.

The following parameters, where applicable, were excluded from the classification procedure: Chemical modifications, Additional fines, Fractured Faces, Soluble Salts, pH, Conductivity, Coarse Sand Ratio, Durability (COLTO: G4-G9).

The following parameters, where applicable, were assumed: Rock types were assumed to be of an Arenaceous nature with Siliceous cementing

Unless otherwise requested or stated, all samples will be discarded after a period of 3 months.

Deviations in Test Methods:

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 07/10/2013

Project : Mzimvubu Water Project Date Reported: 03/12/2013

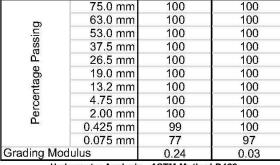
Project No : 2013-B-2246 Page No. : 2 of 22

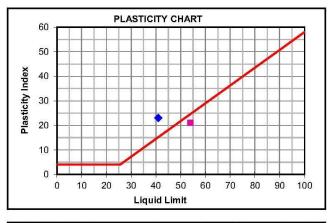
FOUNDATION INDICATOR

Laboratory Number	1 🔷	4
Field Number	RF 1	LF 01
Client Reference		
Depth (m)	1.0-1.3	1.0-1.2
Position		
Coordinates X		
COMP. No. one.	Colluvial	Residual
Description	Reddish	Dolerite
	Brown	Bolomo
Aditional Information		
Calcrete / Crushed		
Stabilizing Agent		
Moisture Content & Re	lative Density-TMH1	Metod A12T

 Moisture Content & Relative Density-TMH1 Metod A12T

 Moisture Content (%)
 |


 Relative Density (S.G.)
 |


 Sieve Analysis (Wet Preparation) - TMH1 Method A1(a)
 |

 75.0 mm
 100
 100

 63.0 mm
 100
 100

 53.0 mm
 100
 100

Hyd	lrometer Analysis	ASTM Method	I D422
je Je	0.060 mm	74	89
faç ng	0.040 mm	67	75
en	0.020 mm	60	69
Percentage Passing	0.006 mm	54	55
<u>a</u> –	0.002 mm	51	49
Gravel	%	0	0
Sand	%	26	11
Silt	%	23	40
Clay	%	51	49

Laboratory Number		1 🔷	4
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	41	54
Plasticity Index	%	23	21
Linear Shrinkage	%	10.0	11.5
Overall Pl	%	23	21
	Classifi	cations	

A-7-6(17)

Unified MH Weston Swell @ 1 kPa 100 80 Percentage Passing 60 40 20 0 0.001 0.01 100 Medium Coarse Medium Fine Medium Coarse Fine Fine Coarse Clay Silt Sand Gravel

HRB

A-7-5(20)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

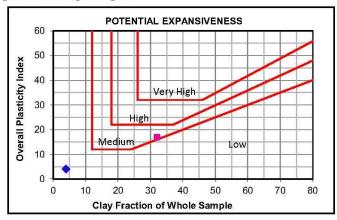
36 Fourth Street, Booysens Reserve, Johannesburg 2091

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

PO Box 82223, Southdale 2135

Tel: +27 (0)11 835 3117•Fax: +27 (0)11 835 2503

Civil Engineering Testing Laboratories

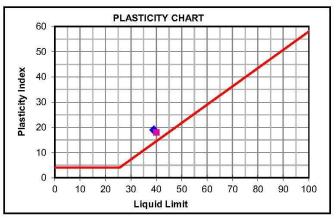

Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 07/10/2013

Project : Mzimvubu Water Project Date Reported: 03/12/2013

Project No : 2013-B-2246 Page No. : 3 of 22

FOUNDATION INDICATOR

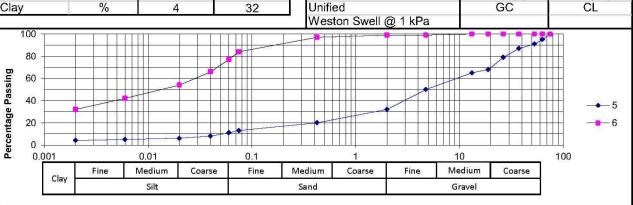
SSP 1 1.7-3.5	SSP 3 0.7-4.9
1.7-3.5	0.7-4.9
1.7-3.5	0.7-4.9
Weathered Dolerite	
	assess that there



Moisture Content & Relative Density-TMH1 Metod A12T

Moisture Content (%)

Relative Density (S.G.)


Sieve An	alysis (Wet Prepara	tion) - TMH1 M	ethod A1(a)
	75.0 mm	100	100
	63.0 mm	95	100
Ë	53.0 mm	91	100
Passing	37.5 mm	87	100
25000	26.5 mm	79	100
ge	19.0 mm	68	100
Ita	13.2 mm	65	100
Ser	4.75 mm	50	99
Percentage	2.00 mm	32	99
	0.425 mm	20	97
	0.075 mm	13	84
Grading Mo	odulus	2.35	0.2
Шхи	dromotor Analysis	ASTM Mathad	D422

		2.00	0.2
Hyd	Irometer Analysis -	ASTM Method	D422
<u>o</u>	0.060 mm	11	77
ල සුර	0.040 mm	8	66
en	0.020 mm	6	54
Percentage Passing	0.006 mm	5	42
<u> </u>	0.002 mm	4	32
Gravel	%	68	1
Sand	%	21	22
Silt	%	7	45
Clay	%	4	32

Laboratory Number		5 🔷	6
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	39	40
Plasticity Index	%	19	18
Linear Shrinkage	%	9.5	10.0
Overall Pl	%	4	17
	Classific	rations	

A-2-6(0)

HRB

A-6(15)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

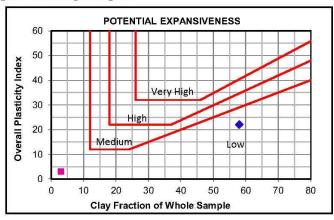
†Sanas Feding Locardary

Civilab

Tel: +27 (0)11 835 3117 • Fax: +27 (0)11 835 2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

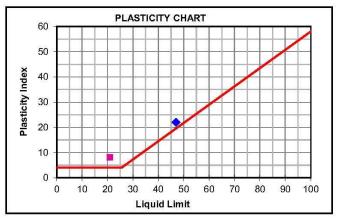
Civil Engineering Testing Laboratories


Client : JEFFARES & GREEN CONSULTING ENGINEERS Date Received: 07/10/2013

Project : Mzimvubu Water Project Date Reported: 03/12/2013

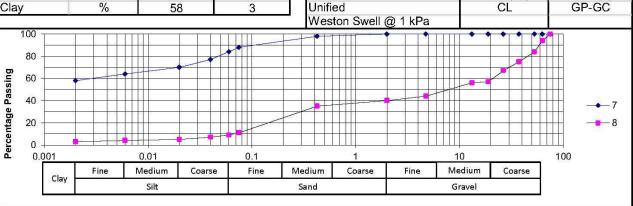
Project No : 2013-B-2246 Page No. : 4 of 22

FOUNDATION INDICATOR


Laboratory Nun	nber	7 🔷	8 -
Field Number		SP 5	SP 7
Client Reference	е		10000
Depth (m)		0.3-2.4	0.15-1.2
Position			
Coordinates X			
Description			
Aditional Inform	ation		
Calcrete / Crush			
Stabilizing Ager	ıt		

Moisture Content & Relative Density-TMH1 Metod A12T
Moisture Content (%)

Relative Density (S.G.)


Sieve An	alysis (Wet Prepara	tion) - TMH1 N	lethod A1(a)
-	75.0 mm	100	100
	63.0 mm	100	94
i ii	53.0 mm	100	84
Passing	37.5 mm	100	75
	26.5 mm	100	67
Percentage	19.0 mm	100	57
l at	13.2 mm	100	56
l ē	4.75 mm	100	44
l e	2.00 mm	100	40
	0.425 mm	98	35
	0.075 mm	88	11
Grading Mo	dulus	0.14	2.14

Hyd	Irometer Analysis -	ASTM Method	I D422
ō	0.060 mm	84	9
් දින් වී	0.040 mm	77	7
eni	0.020 mm	70	5
Percentage Passing	0.006 mm	64	4
PR 1	0.002 mm	58	3
Gravel	%	0	60
Sand	%	16	31
Silt	%	26	6
Clay	%	58	3

Laboratory Number		7	8
Atterberg L	imits - TMH	1 Method A2, A3	& A4
Liquid Limit	%	47	21
Plasticity Index	%	22	8
Linear Shrinkage	%	11.5	2.5
Overall PI	%	22	3
	Classific	cations	

A-7-6(20)

HRB

A-2-4(0)

H 4:

DISPERSIVENESS

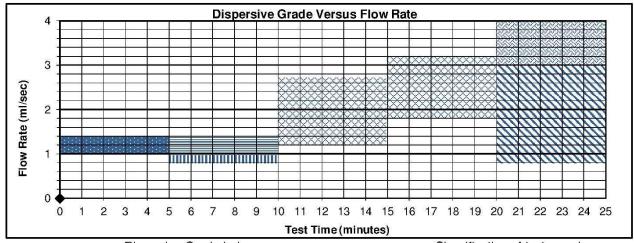
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-2
Job Number	2013-B-2004	Client/Field No.	C2
Date Received	15/10/2013	Depth (m)	0.4 - 2.6

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		Compacted Bulk
Liquid Limit	%	Density kg/m ³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)					5	0		1					180				380					1020				
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25	
Flow Rate (ml/sec)																										
Effluent Water	Sym	nbol:	P	C-Pe	rfect	y Cle	ear	C-C	lear	SD	-Slig	ntly E	ark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark		

Dispersive Grade Index
Dispersive Intermediate Non-dispersive
D1 D2 IIIIII ND4 XXX ND3 XXX ND2 XXX ND1

Classification of test sample

Not tested

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

90. 80. 70. 60. 50. 40. 30. 20.

10. 0.

0.001

Dispersive Grade Index

Non-dispersive
Dispersive
3 4

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class
<30	Non-Dispersive
30-60	Intermediate (additional tests recommended)
>60	Dispersive

Classification of test sample

28 (Non-Dispersive)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

Civilab (Proprietary) Limited

0.01

Particle Size (mm)

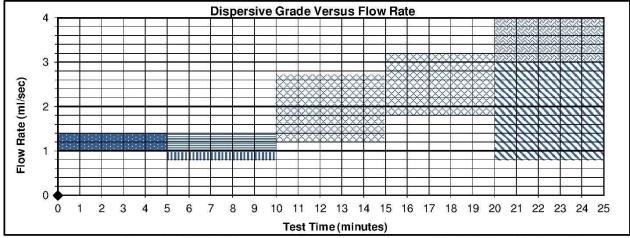
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-4
Job Number	2013-B-2004	Client/Field No.	C4A
Date Received	21/08/2013	Depth (m)	0.4 - 2.1

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		Compacted Leg/m ³ Bulk
Liquid Limit	%	Density kg/m ³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)					5	0		1					180				380					1020				
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25	
Flow Rate (ml/sec)																										
Effluent Water	Sym	nbol:	P	C-Pe	rfect	y Cle	ear	C-C	lear	SD	-Slig	ntly E	ark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark		

Dispersive Grade Index

Dispersive Intermediate Non-dispersive

D1 D2 IIIIII ND4 XXX ND3 XXX ND2 ND1

Classification of test sample

Not tested

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

90. 80. 70. 60. 50. 40. 30. 20.

10. 0.

0.001

Dispersive Grade Index
Non-dispersive Dispersive

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class
<30	Non-Dispersive
30-60	Intermediate (additional tests recommended)
>60	Dispersive

Classification of test sample

9 (Non-Dispersive)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

Civilab (Proprietary) Limited

0.01

Particle Size (mm)

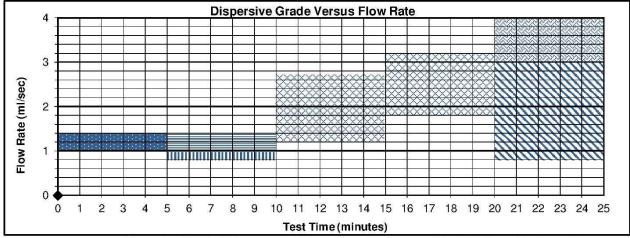
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-7
Job Number	2013-B-2004	Client/Field No.	C7
Date Received	21/08/2013	Depth (m)	0.9 - 2.9

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

a diditiotoro or root odiri	2.0	
Fraction tested		Compacted Legips ³ Bulk
Liquid Limit	%	Density kg/m³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)					5	0							180				380					1020				
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25	
Flow Rate (ml/sec)																										
Effluent Water	Sym	nbol:	P	C-Pe	rfect	y Cle	ear	C-C	lear	SD	-Slig	ntly E	ark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark		

Dispersive Grade Index

Dispersive Intermediate Non-dispersive

D1 D2 IIIIII ND4 XXX ND3 XXX ND2 XXX ND1

Classification of test sample

Not tested

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

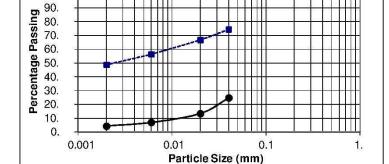
Dispersive Grade Index

Non-dispersive
Dispersive
1 2 3 4

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990


Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class
<30	Non-Dispersive
30-60	Intermediate (additional tests recommended)
>60	Dispersive

Classification of test sample

9 (Non-Dispersive)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

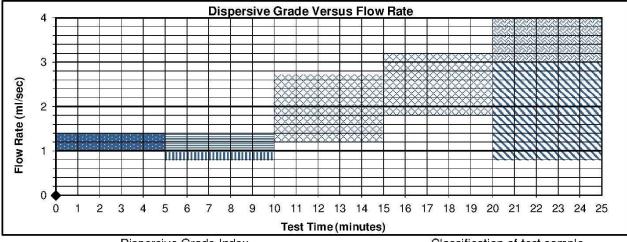
Civilab (Proprietary) Limited

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117 • Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-8
Job Number	2013-B-2004	Client/Field No.	C8
Date Received	21/08/2013	Depth (m)	0.4 - 2.5

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		Compacted Bulk
Liquid Limit	%	Density kg/m ³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)					5	0							180	ĺ				380					1020)	
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25
Flow Rate (ml/sec)																									
Effluent Water	Syn	nbol:	P	C-Pe	rfect	ly Cle	ear	C-C	Clear	SD	-Slig	htly E	Dark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark	

Dispersive Grade index								
Dispersive	Intermediate	Non-dispersive						

Classification of test sample

Dispersive	Intermediate	Non-dispersive	Not tested
D1 D2	IIIIII ND4 XXX ND3	ND2 ND1	Not tested

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

Dispersive Grade Index Non-dispersive Dispersive Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class
<30	Non-Dispersive
30-60	Intermediate (additional tests recommended)
>60	Dispersive

Classification of test sample

27 (Non-Dispersive)

90. 80. 70. 60. 50. 40. 30. 20. 10. 0. 0.001 0.01 Particle Size (mm)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

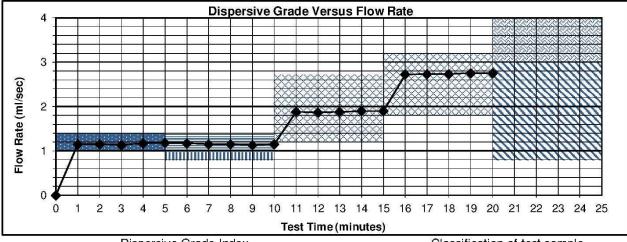
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-11
Job Number	2013-B-2004	Client/Field No.	Mix C2+C4A+C7+C8+C10
Date Received	21/08/2013	Depth (m)	0.4 - 2.5

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		< 2.0 mm	Compacted	Isa /m3 Bu	ılk 1961		
Liquid Limit	%	Not tested	Density	kg/m³ D	ry 1556		
Plastic Limit	%		Moisture Cont	Moisture Content (%)			
Plasticity Index	%		Hole size after test (mm)		0		

Head (mm)					5	0							180					380	ľ			860)
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20		I	
Flow Rate (ml/sec)	1.2	1.2	1.1	1.2	1.2	1.2	1.2	1.2	1.1	1.2	1.9	1.9	1.9	1.9	1.9	2.7	2.7	2.7	2.8	2.8			
Effluent Water	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	С	С	C	С	С			
Emuent water	Syn	nbol:	Р	C-Pe	rfectl	y Cle	ar	C-C	lear	SD	-Slig	htly [ark	ME)-Mo	derat	ely D	ark	D-E	ark	VD	-Very	Dark

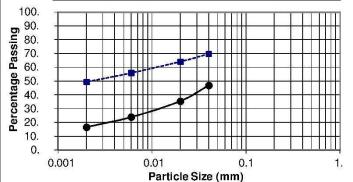
	Dispersive Grade Index											
Dispersiv	е	Interm	rediate	Non-dispersive								
D1	D2	IIIIII ND4	SSS ND3	2020 ND2	1111 ND1							

Classification of test sample

ND3 (Intermediate)

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used


Dispersive Grade Index
Non-dispersive Dispersive

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

---B--- Dispersed —— Undispersed

Dispersive Grade Index
Extract from the U.S. Department of Agricultur: Soil
Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class						
<30	Non-Dispersive						
30-60	Intermediate (additional tests recommended)						
>60	Dispersive						

Classification of test sample

34 (Intermediate)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

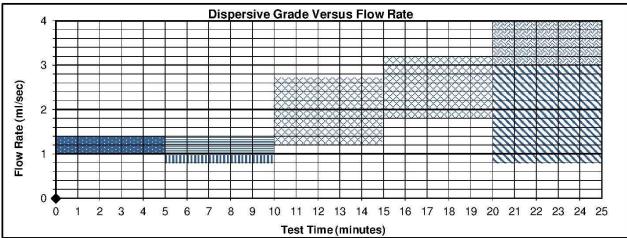
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-12
Job Number	2013-B-2004	Client/Field No.	C12
Date Received	21/08/2013	Depth (m)	0.5 - 2.6

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		Compacted Bulk
Liquid Limit	%	Density kg/m ³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)	50							18						380					80 1020)	
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25
Flow Rate (ml/sec)																									
Effluent Water	Syn	nbol:	P	C-Pe	rfect	ly Cle	ear	C-C	Clear	SD	-Slig	htly E	Dark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark	

	[Dispersive Grade Index													
Dispersive	ï	1	nterm	ediate	9	N	on-dispers	sive							
D1 ===	D2		ND4	XXX.	ND3	9090	ND2 .\\\	ND1							

Classification of test sample

NOT		
NOI	tested	

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

Dispersive Grade Index
Non-dispersive Dispersive

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Class
Non-Dispersive
Intermediate (additional tests recommended)
Dispersive

Classification of test sample

14 (Non-Dispersive)

100. 90. 90. 80. 80. 80. 60. 95. 10. 0.001 0.01 0.1 1. Particle Size (mm)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

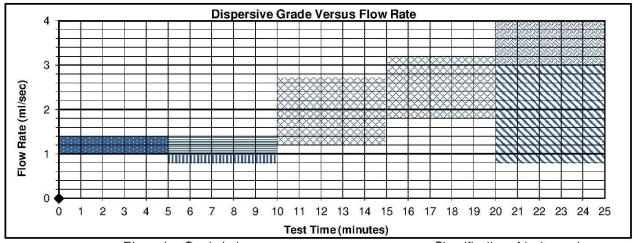
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-15
Job Number	2013-B-2004	Client/Field No.	C18
Date Received	21/08/2013	Depth (m)	0.3 - 2.9

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

T diditiotoro of Tool odiff	710	
Fraction tested		Compacted Bulk
Liquid Limit	%	Density kg/m³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)	50							180						380						1020					
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25
Flow Rate (ml/sec)																									
Effluent Water	Sym	nbol:	P	C-Pe	rfect	y Cle	ear	C-C	lear	SD	-Slig	ntly E	ark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark	

Dispersive Grade Index
Dispersive Intermediate Non-dispersive
D1 D2 IIIIII ND4 XXX ND3 XXX ND2 XXX ND1

Classification of test sample

Not tested

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

90. 80. 70. 60. 50. 40. 30. 20.

10. 0.

0.001

Dispersive Grade Index

Non-dispersive
Dispersive
3 4

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class
<30	Non-Dispersive
30-60	Intermediate (additional tests recommended)
>60	Dispersive

Classification of test sample

31 (Intermediate)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

Civilab (Proprietary) Limited

0.01

Particle Size (mm)

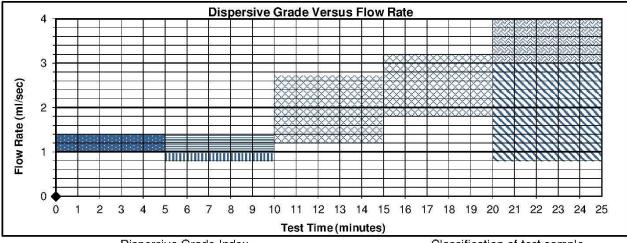
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117 • Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-20
Job Number	2013-B-2004	Client/Field No.	C28
Date Received	21/08/2013	Depth (m)	0.5 - 2.6

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		Compacted Lavara Bulk
Liquid Limit	%	Density kg/m ³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)	50							180						380					1020						
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25
Flow Rate (ml/sec)																									
Effluent Water	Sym	nbol:	P	C-Pe	rfect	y Cle	ear	C-C	lear	SD	-Slig	ntly E	ark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark	

	Dispersive Grade Index										
Dispersiv	е	Interm	rediate	Non-dispersive							
D1	D2	IIIIII ND4	SSS ND3	2020 ND2	1111 ND1						

Classification of test sample

Not tested

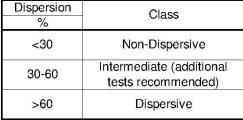
Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

10. 0.

0.001


Dispersive Grade Index Non-dispersive Dispersive Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Classification of test sample

31 (Intermediate)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

Civilab (Proprietary) Limited

0.01

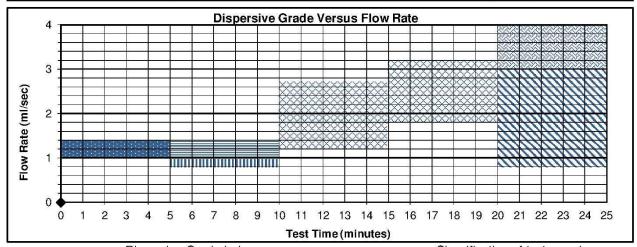
Particle Size (mm)

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-21
Job Number	2013-B-2004	Client/Field No.	C30
Date Received	21/08/2013	Depth (m)	0.5 - 2.1

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		Compacted Bulk
Liquid Limit	%	Density kg/m ³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)					5	0							180	ĺ				380					1020)	
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25
Flow Rate (ml/sec)																									
Effluent Water	Syn	nbol:	P	C-Pe	rfect	ly Cle	ear	C-C	Clear	SD	-Slig	htly E	Dark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark	

Dispersive Grade Index

Dispersive Intermediate Non-dispersive

D1 D2 | | ND4 | ND3 | ND2 | ND1 | ND1 |

Classification of test sample

Not tested

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

Dispersive Grade Index
Non-dispersive Dispersive

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class Non-Dispersive						
<30							
30-60	Intermediate (additional tests recommended)						
>60	Dispersive						

Classification of test sample

46 (Intermediate)

90. 80. 70. 60. 95 50. 40. 30. 20. 10. 0.001 0.1 1. Particle Size (mm)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

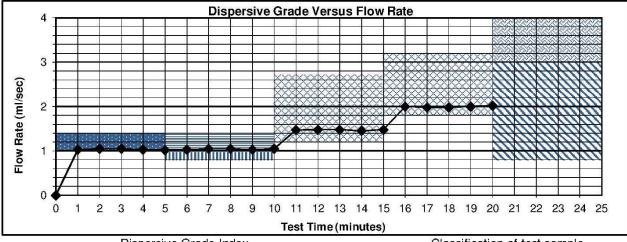
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-22			
Job Number	2013-B-2004	Client/Field No.	Mix C12+C18+C22+C28+C30			
Date Received	21/08/2013	Depth (m)	н			

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		< 2.0 mm	Compacted	Leg /100 3	Bulk	1989
Liquid Limit	%	Not tested	Density	kg/m ³	Dry	1608
Plastic Limit	%		Moisture Cont	ent (%)		23.7
Plasticity Index	%		Hole size after test (mm)			0

Head (mm)					5	0							180					380)			102	0
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20			
Flow Rate (ml/sec)	1.0	1.1	1.1	1.0	1.0	1.0	1.1	1.1	1.0	1.1	1.5	1.5	1.5	1.5	1.5	2.0	2.0	2.0	2.0	2.0			
Effluent Water	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	PC	С	С	С	С			
Emuent water	Syn	nbol:	P	C-Pe	rfectl	y Cle	ar	C-C	lear	SD	-Slig	htly [ark	ME)-Mo	derat	ely D	ark	D-E	Dark	VD	-Very	Dark

	Dispersive Grade Index									
Dispersive		Intermediate	Non-dispersive							
BBB D1	D2	IIIIII ND4 XXX ND3	SSS ND2 XXX ND1							

Classification of test sample

ND3 (Intermediate)

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

90. 80. 70. 60. 50. 40. 30. 20.

10. 0.

0.001

Dispersive Grade Index

Non-dispersive
Dispersive
1 2 3 4

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

spersed Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class								
<30	Non-Dispersive								
30-60	Intermediate (additional tests recommended)								
>60	Dispersive								

Classification of test sample

25 (Non-Dispersive)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

Civilab (Proprietary) Limited

0.01

Particle Size (mm)

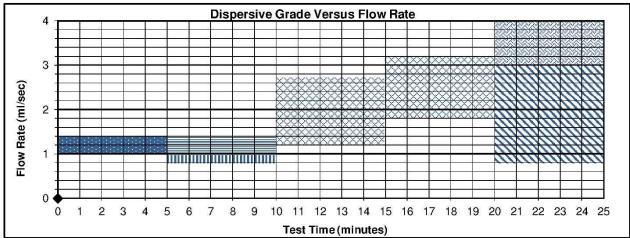
36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel: +27 (0)11 8353117•Fax: +27 (0)11 835 2503 Email: jhb@civilab.co.za•Website: www.civilab.co.za

Civill Engineering Testing Laboratories

Analyses on Potentially Dispersive Soils


Project Name	MZIMVUBU WATER PROJECT	Lab. No.	2004-37
Job Number	2013-B-2004	Client/Field No.	F37A
Date Received	21/08/2013	Depth (m)	CHANNEL

Pinhole Test in accordance with 6.2 of BS 1377:Part 5:1990

Parameters of Test Sample

Fraction tested		Compacted Bulk
Liquid Limit	%	Density kg/m ³ Dry
Plastic Limit	%	Moisture Content (%)
Plasticity Index	%	Hole size after test (mm)

Head (mm)					5	0							180	ĺ				380					1020)	
Time (min)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1	20	21	22	23	24	25
Flow Rate (ml/sec)																									
Effluent Water	Syn	nbol:	P	C-Pe	rfect	ly Cle	ear	C-C	Clear	SD	-Slig	htly E	Dark	МЕ)-Mo	derat	ely D	ark	D-[Dark		VD-	Very	Dark	

Dispersive Grade Index

Dispersive Intermediate Non-dispersive

□ D1 □ D2 □ ND4 □ ND3 □ ND2 ND1

Classification of test sample

Not tested

Crumb Test in accordance with 6.3 of BS 1377:Part 5:1990

Reagent used

100.

Dispersive Grade Index
Non-dispersive Dispersive

Classification of test sample

Not tested

Double Hydrometer Test in accordance with 6.4 of BS 1377:Part 5:1990

Dispersive Grade Index

Extract from the U.S. Department of Agricultur: Soil Conservation service: Soil Mechanics Note No. 13 (1991)

Dispersion %	Class					
<30	Non-Dispersive					
30-60	Intermediate (additional tests recommended)					
>60	Dispersive					

Classification of test sample

48 (Intermediate)

90. 80. 70. 60. 90. 90. 10. 0.001 0.01 0.01 1. Particle Size (mm)

Remarks: These methods may not be suited to materials where the clay content < 10% and plasticity index ≤ 4. Hydrometer tests are done in accordance with ASTM D422 and interpreted according to BS 1377: Part 5.

Civilab (Proprietary) Limited

H 5

TRIAXIAL

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	_		-	— 12
Triaxial	Compre	noisse	ACT	Recuite
IIIUAIUI	Compie	,001011	1000	ILCOUITO

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-11
Field Sample Number:	Refer to Remarks	Depth (m):	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed C2, C4A, C7, C8, C10 in equal fractions.

SATURATION DATA Test No. 1

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 343.0	Final back pressure (kPa): 333.0	Final B parameter: 0.96

CONSOLIDATION DATA

Effective cons. Stress (kPa	1):	100.0	t10	0 (minutes):	9	Side drains fitted: Yes			
-	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific	
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity	
INITIAL (Before saturation)	*100.87	*50.1	1971.36	27.1	1457	0.8183	88	0.05	
CONSOLIDATED	100.06	49.70	1939.68	30.4	1493	0.7745	104	2.65 Assumed	
FINAL (After shear)	80.01	55.57	2425.65	30.4	1493	0.7747	104	Assumeu	
Initial pore pressure (kPa):	442.7	Fir	al pore pre	ssure (kPa):	336.7	PWP dissi	pation (%): 10	00	
*: Measured dimensions: a	ll other dim	ensions are	calculated.						

SHEAR DATA

Rate of strain (%/hour):	1.00							
Initial pore pressure (kPa):	336.0	Initial	effective s	tress (kPa):	100.0			
Parameters at failure:								
Failure Criterion:	Max. Effective	Principle S	Stress Ratio	ס				
Axial strain (%):	7.9	52						
Deviator stress (kPa):	83	8.8				Principle St	resses (kPa)) _e
Excess pore pressure (kPa	a): 71	.5			σ1	σ1'	σ3	σ3'
Effective principle stress ra	atio: 3.9	946			183.8	112.3	100.0	28.5
Deviator stress corrections:	Membrane corre	ection: 1.1 k	Pa & Side d	rain(filter) co	rrection: 7 kF	a for Strains	>= 2%	

Deviator Stress and dPore Pressure vs Strain Effective principle stress ratio 100 4.5 90 80 3.5 Effective Principle Stress Ratio 70 Deviator Stress (kPa) 60 3 50 2.5 40 30 2 20 1.5 10 15.0 25.0 Axial Strain %

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compres	sion I	Cest F	Results
IIIUANIUI	COLLINICO	J. J. I		1000IL

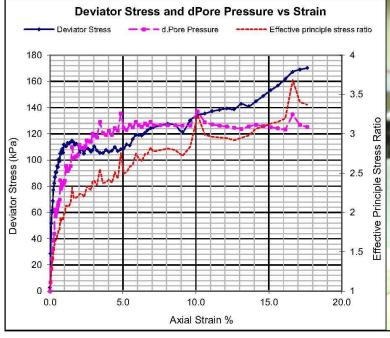
Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-11
Field Sample Number:	Refer to Remarks	Depth (m):	ä

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed C2, C4A, C7, C8, C10 in equal fractions.

SATURATION DATA Test No. 2

Pressure increments applied (kl	Pa): 50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 423.0	Final back pressure (kPa): 413.0	Final B parameter: 0.98


CONSOLIDATION DATA

Effective cons. Stress (kPa	1):	197.0	t10	0 (minutes):	4	Side drains fitted: Yes			
	Height	Diameter	ameter Area		Moisture Dry Density		Saturation	Specific	
	mm	mm	mm ²	Content %	kg/m ³	Ratio	%	Gravity	
INITIAL (Before saturation)	*101.09	*50.13	1973.72	25.3	1474	0.7978	84	0.05	
CONSOLIDATED	99.24	49.21	1901.61	21.9	1559	0.6993	83	2.65	
FINAL (After shear)	81.75	54.22	2308.65	21.9	1558	0.7005	83	Assumed	
Initial pore pressure (kPa): 605.4 Fi		al pore pre	ssure (kPa):	415.5	PWP dissipation (%): 100				
*: Measured dimensions; a	ll other dim	ensions are	calculated.						

SHEAR DATA

Rate of strain (%/hour):	1.25							
Initial pore pressure (kPa):	420.0	Initial ef	fective stress (kPa):	197.0				
Parameters at failure:			*					
Failure Criterion:	Max. Effective	Principle Str	ress Ratio					
Axial strain (%):	16	.63						
Deviator stress (kPa):	16	7.1			Pri	nciple Str	esses (kPa)	
Excess pore pressure (kPa	ı): 13	4.7		σ1		σ1'	σ3	σ3'
Effective principle stress ra	tio: 3.6	684		364.	1	229.4	197.0	62.3

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	_		-	— 12
Triaxial	Compre	noisse	ACT	Recuite
IIIUAIUI	Compie	,001011	1000	ILCOUITO

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-11
Field Sample Number:	Refer to Remarks	Depth (m):	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed C2, C4A, C7, C8, C10 in equal fractions.

SATURATION DATA Test No. 3

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 323.0	Final back pressure (kPa): 313.0	Final B parameter: 1.00

CONSOLIDATION DATA

Effective cons. Stress (kPa):		398.7 t100 (minutes): 100		100	Side drains fitted: Yes			
-	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*100.97	*50.14	1974.51	25.4	1472	0.8001	84	0.05
CONSOLIDATED	97.93	48.60	1855.43	26.3	1619	0.6372	110	2.65 Assumed
FINAL (After shear)	83.72	52.57	2170.27	26.3	1615	0.6405	109	Assumed
Initial pore pressure (kPa):	704.3	Fir	al pore pre	ssure (kPa):	312.0	PWP dissi	pation (%): 10	00
*: Measured dimensions: a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.20						
Initial pore pressure (kPa):	313.3	Initial effec	ctive stress (kPa): 398.7			
Parameters at failure:				*			
Failure Criterion:	Max. Effective	Principle Stres	s Ratio				
Axial strain (%):	6.3	31					
Deviator stress (kPa):	28	32.1			Principle St	resses (kPa)	i.
Excess pore pressure (kP	a): 25	51.1		σ1	σ1'	σ3	σ3'
Effective principle stress ratio: 2.912				680.7	429.6	398.7	147.5
Deviator stress corrections:	Membrane corre	ection: 1.1 kPa &	Side drain(filter)	correction: 7 kP	a for Strains	>= 2%	

Deviator Stress and dPore Pressure vs Strain Effective principle stress ratio 350 3.5 300 3 250 Effective Principle Stress Ratio Deviator Stress (kPa) 2.5 200 150 2 100 1.5 50 10.0 20.0 Axial Strain %

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

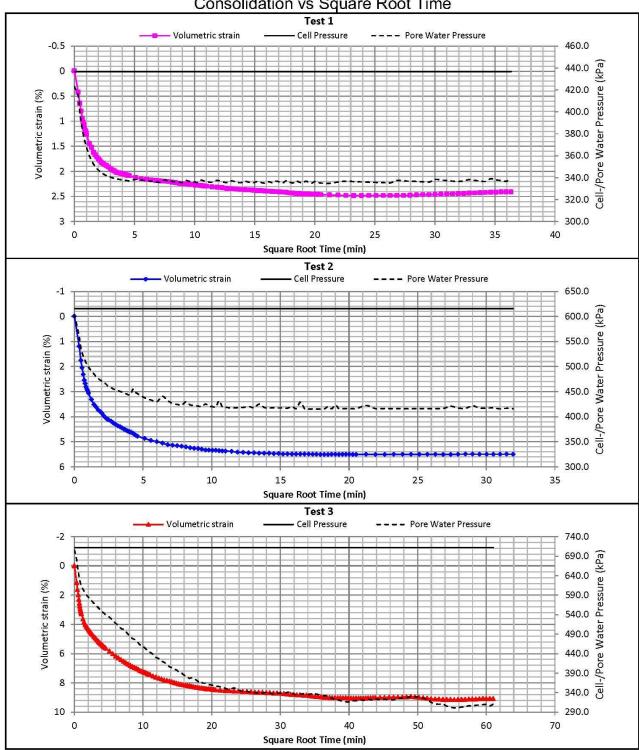
Triaxial Compression Test Results						
Project:	Mzinvubu Water Project	Date Received:	2013/08/23			
Job Number:	2013-B-2004	Laboratory Number:	B-2004-11			
Field Sample Reference:	Refer to Remarks	Depth (m):	(90 <u>m</u> (800)			

Effective Shear Strength Parameters Stresses Cohesion (kPa) Internal friction (Degrees) Total 10.4 Effective 15.1 26.6 Effective Shear Strength - Mohr circles at failure 300 200 t (BS1377:8) 100 100 200 300 400 500 600 s' (BS1377:8) **Effective Shear Strength - Stress Paths** 300 200 t (BS1377:8) 100 100 200 400 500 600 s' (BS1377:8)

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za


Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-11
Field Sample Reference:	Refer to Remarks	Depth (m):	8₩

Consolidation vs Square Root Time

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	_		-	— 12
Triaxial	Compre	noisse	ACT	Recuite
IIIUAIUI	Compie	,001011	1000	ILCOUITO

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	2004-22
Field Sample Number:	Refer to Remarks	Depth (m):	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

A Consolidated Undrained test on a remoulded sample tested saturated. Mixed C12, C18, Remarks: C22, C28, C30 in equal fractions.

Test No. 1 SATURATION DATA

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 323.0	Final back pressure (kPa): 313.0	Final B parameter: 0.99

CONSOLIDATION DATA

Effective cons. Stress (kPa): 99		99.2 t100 (minutes): 16			Side drains fitted: Yes			
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm ²	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*100.07	*49.96	1960.36	27.6	1470	0.8079	91	0.057
CONSOLIDATED	99.33	49.59	1931.46	31.0	1503	0.7680	107	2.657 Determined
FINAL (After shear)	87.30	52.90	2197.68	31.0	1503	0.7682	107	Determinen
Initial pore pressure (kPa):	406.8	Fir	al pore pre	ssure (kPa):	317.0	PWP dissip	oation (%): 10	00
*: Measured dimensions; a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.25						
Initial pore pressure (kPa):	322.8	Initial effe	ctive stress (kPa):	99.2			
Parameters at failure:							
Failure Criterion: M	lax. Deviator S	tress					
Axial strain (%):	0.65	5					
Deviator stress (kPa): 92.8				Principle Stresses (kPa)			
Excess pore pressure (kPa)	: 48.0)		σ1	σ1'	σ3	σ3'
Effective principle stress rati	o: 2.81	11		192.0	144.0	99.2	51.2

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2% **Deviator Stress and dPore Pressure vs Strain** Effective principle stress ratio 100 3.5 80 3 Effective Principle Stress Ratio 60 Deviator Stress (kPa) 2.5 40 20 -20 10.0 12.0 14.0 Axial Strain %

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	^			E 1923
Iriaxial	Compre	ession	Lest R	Parille
IIIMAIMI	COLLIDIO	-001011		

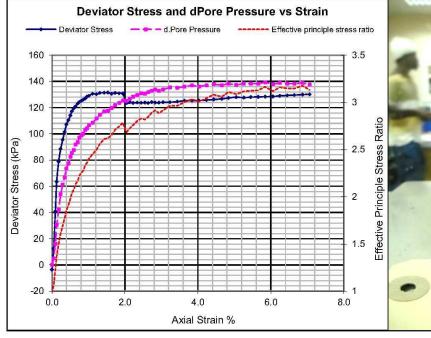
Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	2004-22
Field Sample Number:	Refer to Remarks	Depth (m):	B

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed C12, C18, C22, C28, C30 in equal fractions.

Test No. 2 **SATURATION DATA**

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97


CONSOLIDATION DATA

Effective cons. Stress (kPa):		198.5 t100 (minutes): 100		Side drains fitted: Yes		Yes		
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*100.52	*50.01	1964.28	27.5	1464	0.8147	90	0.057
CONSOLIDATED	99.05	49.27	1906.68	29.7	1532	0.7349	107	2.657 Determined
FINAL (After shear)	92.05	51.11	2051.57	29.7	1531	0.7356	107	Detellillen
Initial pore pressure (kPa): 535.5 Final pore pressure (kPa): 346.0 PWP dissipation (%): 100					00			
*: Measured dimensions, a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.33							
Initial pore pressure (kPa):	348.5	Initial effec	ctive stress (kPa):	198.5				
Parameters at failure:								
Failure Criterion:	Max. Deviator	Stress						
Axial strain (%):	1.5	3						
Deviator stress (kPa):	13	1.4			Pri	nciple Str	esses (kPa)	
Excess pore pressure (kPa	a): 11	7.4		σ1		σ1'	σ3	σ3'
Effective principle stress ra	atio: 2.6	20		330.0)	212.5	198.5	81.1

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	_		-	— 12
Triaxial	Compre	noisse	ACT	Recuite
IIIUAIUI	Compie	,001011	1000	ILCOUITO

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	2004-22
Field Sample Number:	Refer to Remarks	Depth (m):	(4)

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed C12, C18, C22, C28, C30 in equal fractions.

SATURATION DATA Test No. 3

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 333.0	Final back pressure (kPa): 323.0	Final B parameter: 1.00

CONSOLIDATION DATA

Effective cons. Stress (kPa):		404.0 t100 (minutes): 100		Side drains fitted: Yes		Yes			
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific	
	mm	mm	mm ²	Content %	kg/m ³	Ratio	%	Gravity	
INITIAL (Before saturation)	*100.08	*50.03	1965.85	27.3	1483	0.7921	92	0.057	
CONSOLIDATED	97.77	48.86	1875.11	27.8	1593	0.6680	110	2.657 Determined	
FINAL (After shear)	88.18	51.45	2079.16	27.8	1591	0.6699	110	Determined	
Initial pore pressure (kPa):	710.4	Fir	al pore pre	ssure (kPa):	313.0	PWP dissip	oation (%): 10	00	
*: Measured dimensions; a	*: Measured dimensions; all other dimensions are calculated.								

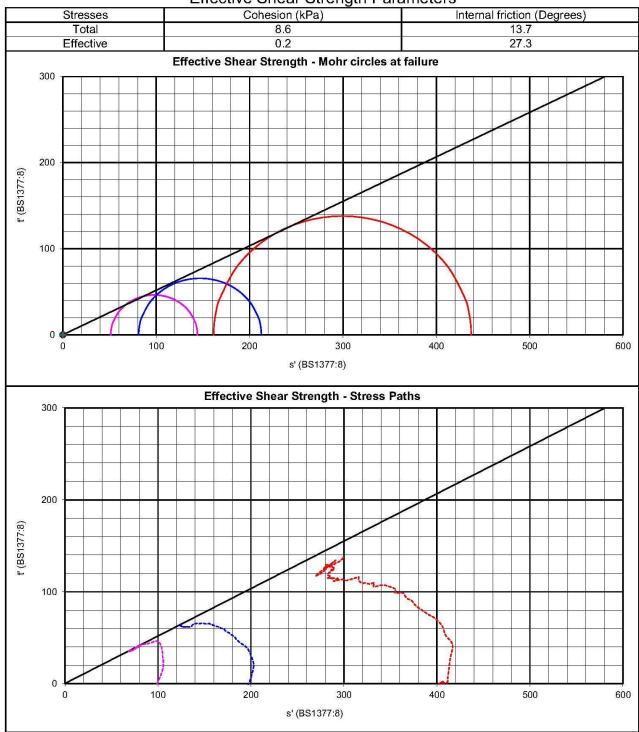
SHEAR DATA

Rate of strain (%/hour):	0.20							
Initial pore pressure (kPa):	322.0	Initial	effective stre	ss (kPa): 4	04.0			
Parameters at failure:								
Failure Criterion:	Max. Deviator	Stress						
Axial strain (%):	9.3	81						
Deviator stress (kPa):	27	76.0				Principle St	resses (kPa)	Ų,
Excess pore pressure (kP	a): 24	12.6			σ1	σ1'	σ3	σ3'
Effective principle stress ra	atio: 2.	710			679.9	437.4	404.0	161.4
Deviator stress corrections:	Membrane corre	ection: 0 kPa	a & Side drain	(filter) correc	tion: 7 kPa	for Strains >=	2%	

Deviator Stress and dPore Pressure vs Strain Effective principle stress ratio 300 2.8 2.6 250 200 Ratio 2.2 Deviator Stress (kPa) Stress 150 2 Effective Principle 1.8 100 1.6 50 0 1.2 -50 10.0 12.0 Axial Strain %

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117


E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

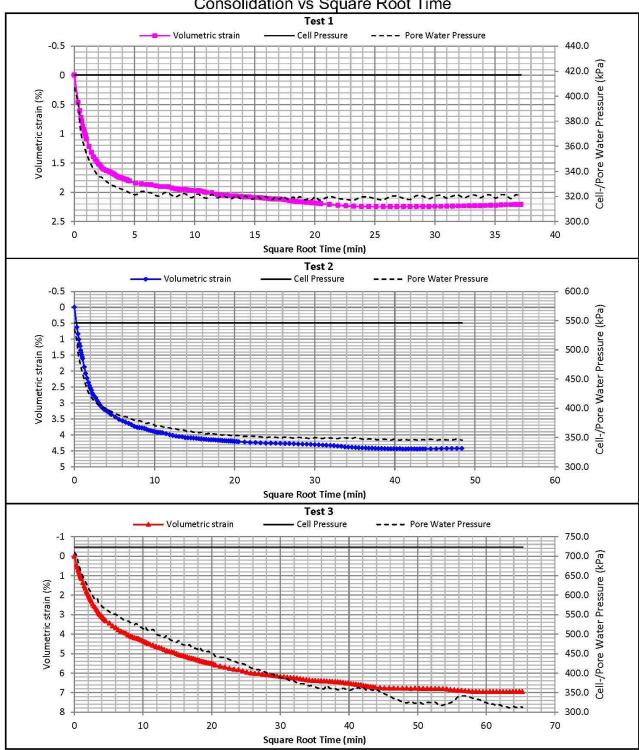
Triaxial Compression Test Results						
Project:	Mzinvubu Water Project	Date Received:	2013/08/23			
Job Number:	2013-B-2004	Laboratory Number:	2004-22			
Field Sample Reference:	Refer to Remarks	Depth (m):	-			

Effective Shear Strength Parameters

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za


Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	2004-22
Field Sample Reference:	Refer to Remarks	Depth (m):	8≅

Consolidation vs Square Root Time

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	_		-	- 12
Triaxial	Compre	noisse	ACT	Recuite
IIIUAIUI	Compie	-001011	1000	ILCOUITO

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-29
Field Sample Number:	Refer to Remarks	Depth (m):	(4)

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed F5, F8, F10 in equal fractions.

SATURATION DATA Test No. 1

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.96

CONSOLIDATION DATA

Effective cons. Stress (kPa):		101.1 t100 (minutes): 60			Side drains fitted: No			
Height		Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*100.29	*50.18	1977.66	10.3	1932	0.3281	80	0.500
CONSOLIDATED	99.36	49.71	1940.91	15.4	1987	0.2911	136	2.566 Determined
FINAL (After shear)	94.76	50.90	2035.13	15.4	1987	0.2913	136	Determined
Initial pore pressure (kPa):	339.1	Fir	al pore pre	ssure (kPa):	339.6	PWP dissip	oation (%): N	o build-up
*: Measured dimensions, a	ll other dim	ensions are	calculated.					

SHEAR DATA

0.30							
336.9	Initial effect	ive stress (kPa):	101.1				
Max. Deviator Str	ress						
4.13							
149.7	7			Р	rinciple Str	esses (kPa)	L _i
): 36.8			σ1		σ1'	σ3	σ3'
tio: 3.328	3		250.	8	214.0	101.1	64.3
	336.9 Max. Deviator Str. 4.13 149.7): 36.8	336.9 Initial effect Max. Deviator Stress 4.13 149.7): 36.8	336.9 Initial effective stress (kPa): Max. Deviator Stress 4.13 149.7): 36.8	336.9 Initial effective stress (kPa): 101.1 Max. Deviator Stress 4.13 149.7): 36.8	336.9 Initial effective stress (kPa): 101.1 Max. Deviator Stress 4.13 149.7 P): 36.8	336.9 Initial effective stress (kPa): 101.1 Max. Deviator Stress 4.13 149.7 Principle Str): 36.8	336.9 Initial effective stress (kPa): 101.1 Max. Deviator Stress 4.13 149.7 Principle Stresses (kPa)): 36.8 σ1 σ1' σ3

Deviator stress corrections: Membrane correction: 1.1 kPa **Deviator Stress and dPore Pressure vs Strain** Effective principle stress ratio 3.5 160 140 3 120 Effective Principle Stress Ratio Deviator Stress (kPa) 100 2.5 80 60 40 1.5 20 0.0 5.0 Axial Strain %

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	^			
Iriaxial	Compre	ession	Lest F	Results
IIIMAIMI	COLLINIC			1000IL

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-29
Field Sample Number:	Refer to Remarks	Depth (m):	B

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed F5, F8, F10 in equal fractions.

Test No. 2 **SATURATION DATA**

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97

CONSOLIDATION DATA

Effective cons. Stress (kPa	ı):	199.7 t100 (minutes): 60			Side drains fitted: No			
Height		Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*99.65	*49.78	1946.25	10.7	1969	0.3035	90	0.500
CONSOLIDATED	98.53	49.22	1902.68	14.5	2037	0.2597	143	2.566 Determined
FINAL (After shear)	94.16	50.35	1990.97	14.5	2036	0.2600	143	Determined
Initial pore pressure (kPa):	339.6	Fin	al pore pres	ssure (kPa):	340.5	PWP dissip	ation (%): N	lo build-up
*: Measured dimensions; a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.30							
Initial pore pressure (kPa):	340.3	Initial	effective stress (kPa):	199.7	9			
Parameters at failure:			*					
Failure Criterion:	Max. Deviator	Stress						
Axial strain (%):	4.4	3						
Deviator stress (kPa):	22	1.0			E	Principle Str	esses (kPa)	
Excess pore pressure (kPa	a): 10:	5.7		σ	1	σ1'	σ3	σ3'
Effective principle stress ra	atio: 3.3	51		420	0.7	315.0	199.7	94.0

Deviator stress corrections: Membrane correction: 1.1 kPa

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	_		-	-
Triaxial	Compre	noisse	ACT	Recuite
IIIUAIUI	Compie	,001011	1000	ILCOUITO

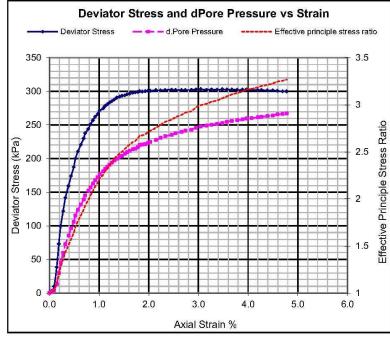
Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-29
Field Sample Number:	Refer to Remarks	Depth (m):	(4)

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed F5, F8, F10 in equal fractions.

SATURATION DATA Test No. 3

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97


CONSOLIDATION DATA

Effective cons. Stress (kPa):		399.4 t100 (minutes): 120		Side drains fitted: No					
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific	
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity	
INITIAL (Before saturation)	*100.35	*50.17	1976.87	10.3	1931	0.3287	7 80		
CONSOLIDATED	98.59	49.28	1907.50	14.0	2038	0.2588	139	2.566 Determined	
FINAL (After shear)	93.88	50.50	2003.17	14.0	2037	0.2596	139	Determined	
Initial pore pressure (kPa): 339.1 Fin:		al pore pre	ssure (kPa):	339.0	PWP dissip	oation (%): 10	00		
*: Measured dimensions, a	ll other dim	ensions are	calculated.						

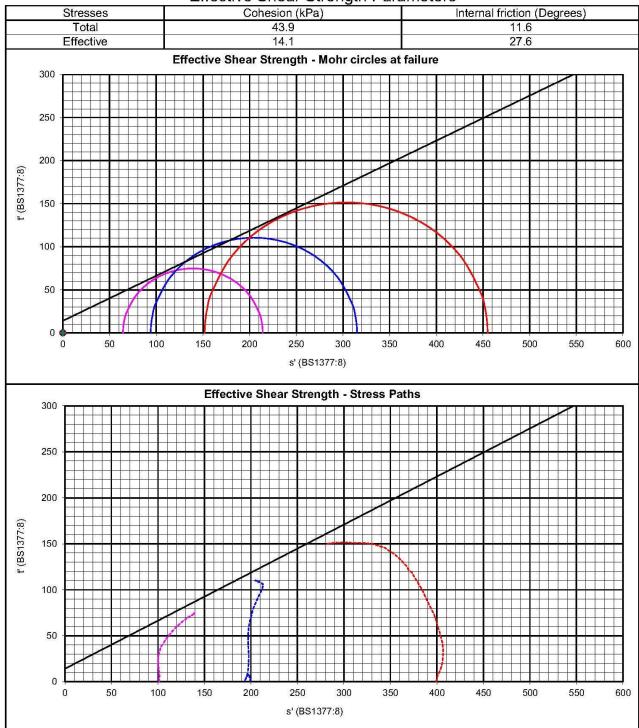
SHEAR DATA

Rate of strain (%/hour):	0.30						
Initial pore pressure (kPa):	338.6	Initial eff	ective stress (kPa):	399.4			
Parameters at failure:							
Failure Criterion: M	lax. Deviator S	tress					
Axial strain (%):	3.05	5					
Deviator stress (kPa):	303.0			Principle Stresses (kPa)			
Excess pore pressure (kPa): 247.5				σ1	σ1'	σ3	σ3'
Effective principle stress rati	o: 2.99	96		702.4	454.9	399.4	151.8

Deviator stress corrections: Membrane correction: 1.1 kPa

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117


E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

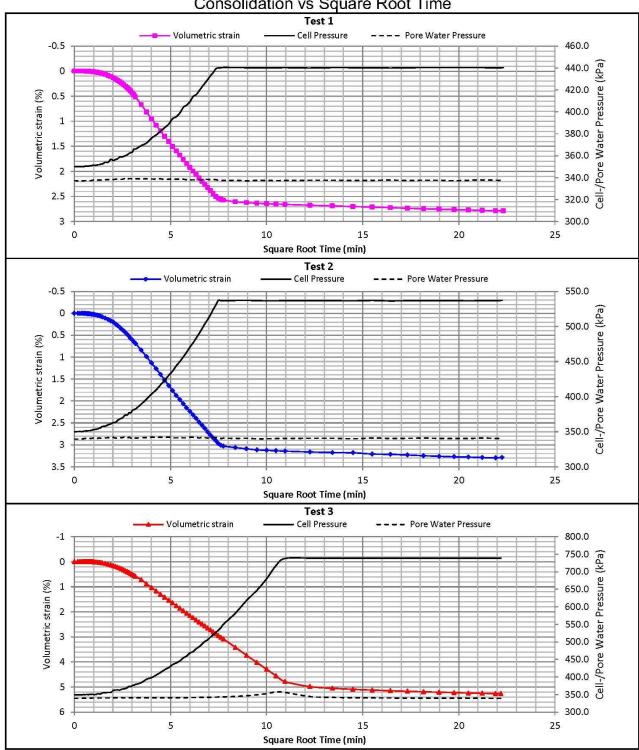
Triaxial Compression Test Results						
Project:	Mzinvubu Water Project	Date Received:	2013/08/23			
Job Number:	2013-B-2004	Laboratory Number:	B-2004-29			
Field Sample Reference:	Refer to Remarks	Depth (m):)E			

Effective Shear Strength Parameters

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za


Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-29
Field Sample Reference:	Refer to Remarks	Depth (m):	8₩

Consolidation vs Square Root Time

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compres	sion Te	st Results

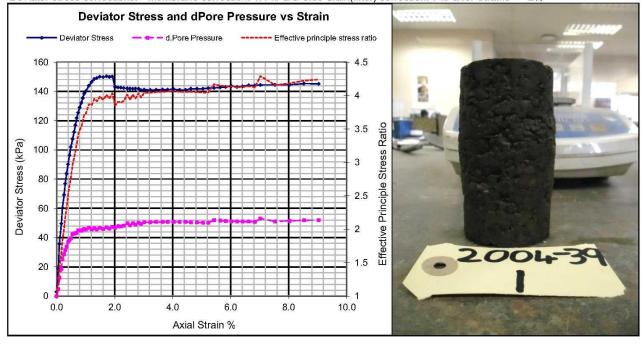
Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-39
Field Sample Number:	Refer to Remarks	Depth (m):	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed F25, F29, F34, F37 and F39 in equal fractions.

SATURATION DATA Test No. 1

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 383.0	Final back pressure (kPa): 373.0	Final B parameter: 0.96


CONSOLIDATION DATA

Effective cons. Stress (kPa):		96.9 t100 (minutes): 64			Side drains fitted: Yes			
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*100.3	*50.06	1968.21	11.4	1946	0.3964	78	
CONSOLIDATED	99.66	49.74	1942.95	14.1	1984	0.3695	104	2.717 Determined
FINAL (After shear)	90.65	52.15	2135.91	14.1	1984	0.3697	104	Determined
Initial pore pressure (kPa):	464.2	Fir	al pore pre	ssure (kPa):	368.0	PWP dissi	pation (%): 10	00
*: Measured dimensions: al	l other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.50							
Initial pore pressure (kPa):	371.1	Initia	l effective stress (kPa):	96.9				
Parameters at failure:								
Failure Criterion: M	lax. Deviator	Stress						
Axial strain (%):	1.7	72						
Deviator stress (kPa): 150.3				Principle Stresses (kPa)				
			σ1'	σ3	σ3'			
Effective principle stress ration	o: 4.0	009		247	7.2	200.2	96.9	49.9

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compres	sion Tes	t Results
			e i compiler

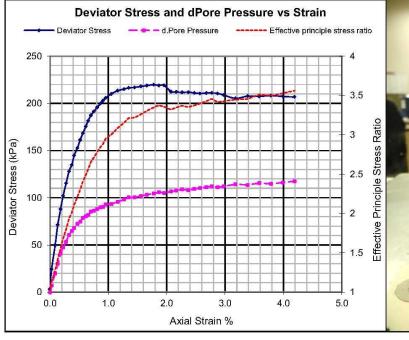
Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-39
Field Sample Number:	Refer to Remarks	Depth (m):	ä

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed F25, F29, F34, F37 and F39 in equal fractions.

SATURATION DATA Test No. 2

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 343.0	Final back pressure (kPa): 333.0	Final B parameter: 0.96


CONSOLIDATION DATA

Effective cons. Stress (kPa):		198.1 t100 (minutes): 25		Side drains fitted: Yes				
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*100.62	*50.01	1964.28	11.4	1943	0.3984	78	0.747
CONSOLIDATED	99.46	49.43	1918.84	13.7	2013	0.3499	107	2.717 Determined
FINAL (After shear)	95.29	50.50	2002.72	13.7	2012	0.3503	106	Detellillen
Initial pore pressure (kPa): 527.1 Final pore pressure (kPa): 339			339.5	PWP dissip	oation (%): 1	00		
*: Measured dimensions; a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.30								
Initial pore pressure (kPa):	340.9	Initial	effective stres	s (kPa):	198.1				
Parameters at failure:									
Failure Criterion:	Max. Deviator	Stress							
Axial strain (%):	1.7	78							
Deviator stress (kPa):	21	9.7				Principle	Stresses	(kPa))
Excess pore pressure (kPa): 10	4.5			σ1	σ1'	σ	3	σ3'
Effective principle stress rat	tio: 3.3	349			417.8	313.3	3 198	3.1	93.5

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triavial	Compres	cion T	act F	Paculte
IIIaxiai	Compres	SIUII	Cari	/caulta

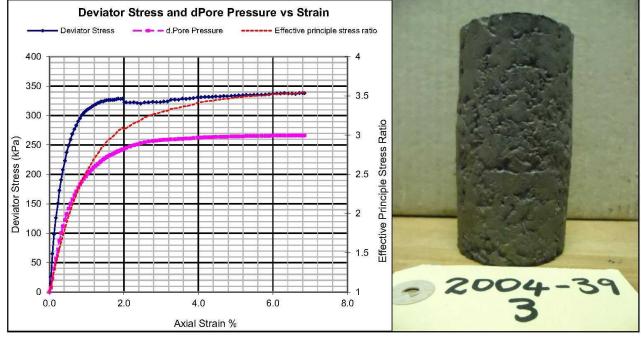
Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-39
Field Sample Number:	Refer to Remarks	Depth (m):	

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on a remoulded sample tested saturated. Mixed F25, F29, F34, F37 and F39 in equal fractions.

SATURATION DATA Test No. 3

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97


CONSOLIDATION DATA

Effective cons. Stress (kPa):		399.3 t100 (minutes): 120		Side drains fitted: Yes				
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm ²	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*99.8	*50.06	1968.21	11.7	1952	0.3920	81	0.747
CONSOLIDATED	98.33	49.32	1910.31	14.7	2042	0.3306	121	2.717 Determined
FINAL (After shear)	91.60	51.10	2050.74	14.7	2041	0.3312	121	Determined
Initial pore pressure (kPa):	339.5	Fir	al pore pre	ssure (kPa):	336.9	PWP dissip	oation (%): 10	00
*: Measured dimensions; al	*: Measured dimensions; all other dimensions are calculated.							

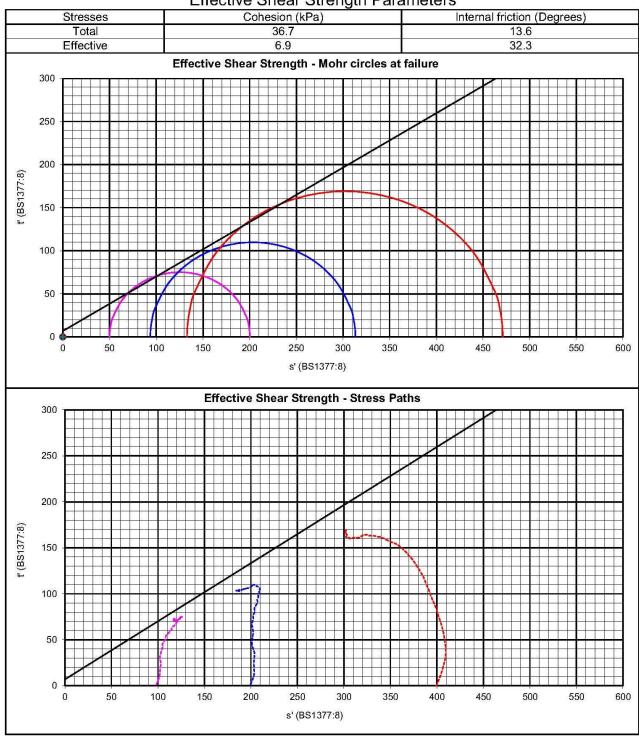
SHEAR DATA

Rate of strain (%/hour):	0.28						
Initial pore pressure (kPa):	335.7	Initial effect	ive stress (kPa):	399.3			
Parameters at failure:							
Failure Criterion: Ma	ax. Deviator Str	ress					
Axial strain (%):	6.80						
Deviator stress (kPa):	338.2	2			Principle St	resses (kPa	
Excess pore pressure (kPa):	266.3	3		σ1	σ1'	Ω3	σ3'
Effective principle stress ratio	o: 3.544	1		737.5	471.2	399.3	132.9

Deviator stress corrections: Membrane correction: 1.1 kPa & Side drain(filter) correction: 7 kPa for Strains >= 2%

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117


E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civil Engineering Testing Laboratory

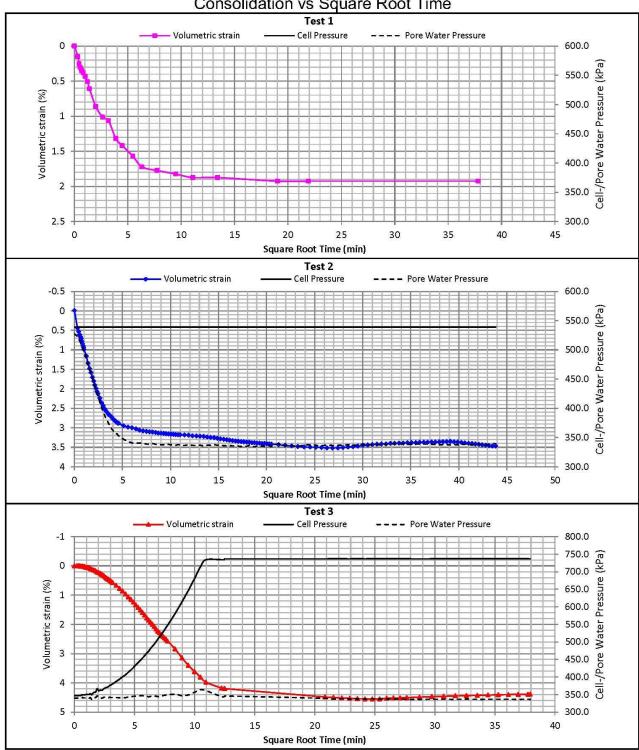
Triaxial Compression Test Results						
Project:	Mzinvubu Water Project	Date Received:	2013/08/23			
Job Number:	2013-B-2004	Laboratory Number:	B-2004-39			
Field Sample Reference:	Refer to Remarks	Depth (m):	18			

Effective Shear Strength Parameters

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za


Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzinvubu Water Project	Date Received:	2013/08/23
Job Number:	2013-B-2004	Laboratory Number:	B-2004-39
Field Sample Reference:	Refer to Remarks	Depth (m):	

Consolidation vs Square Root Time

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

	_		-	-
Triaxial	Compre	noisse	ACT	Recuite
IIIUAIUI	Compie	,001011	1000	ILCOUITO

Project:	Mzimvubu Water Project	Date Received:	2013/10/07
Job Number:	2013-B-2246	Laboratory Number:	B-2246-2
Field Sample Number:	RF 1	Depth (m):	1.0 - 1.3

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on an undisturbed sample tested saturated.

SATURATION DATA Test No. 1

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 1.00

CONSOLIDATION DATA

Effective cons. Stress (kPa):		98.1 t100 (minutes): 1		1	Side drains fitted: No			
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*100	*50	1963.50	25.5	1433	0.8420	80	Na managar
CONSOLIDATED	99.53	49.77	1945.11	30.7	1453	0.8162	99	2.639 Determined
FINAL (After shear)	90.55	52.17	2137.95	30.7	1453	0.8162	99	Determined
Initial pore pressure (kPa):	435.5	Fir	al pore pre	ssure (kPa):	347.0	PWP dissi	pation (%): 10	00
*: Measured dimensions: al	l other dim	ensions are	calculated.					

SHEAR DATA

0.40						
348.9	Initial effective stress (kPa): 98.1					
Max. Effective F	rinciple Stress	Ratio				
1.51						
88.0)			Principle Str	esses (kPa)
i): 76.2	2		σ1	σ1'	σ3	σ3'
tio: 5.02	28		186.1	109.9	98.1	21.9
	348.9 Max. Effective F 1.51 88.0): 76.2	348.9 Initial effective Principle Stress 1.51 88.0): 76.2	348.9 Initial effective stress (kPa): Max. Effective Principle Stress Ratio 1.51 88.0): 76.2	348.9 Initial effective stress (kPa): 98.1 Max. Effective Principle Stress Ratio 1.51 88.0): 76.2 σ1	348.9 Initial effective stress (kPa): 98.1 Max. Effective Principle Stress Ratio 1.51 88.0 Principle Str): 76.2 σ1 σ1'	348.9 Initial effective stress (kPa): 98.1 Max. Effective Principle Stress Ratio Principle Stresses (kPa): 98.1 88.0 Principle Stresses (kPa): 76.2 σ1 σ1' σ3

Deviator stress corrections: Membrane correction: 1.1 kPa **Deviator Stress and dPore Pressure vs Strain** Effective principle stress ratio 5.5 100 90 5 80 4.5 Ratio 70 Deviator Stress (kPa) 60 Stress 3.5 50 Effective Principle 3 40 2.5 30 2 20 1.5 10 6.0 10.0 Axial Strain %

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compres	sion T	est l	Results
I I I MANIMI	OULIPIOO	O. O		TO COLLEC

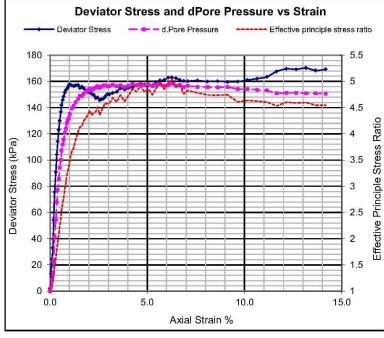
Project:	Mzimvubu Water Project	Date Received:	2013/10/07
Job Number:	2013-B-2246	Laboratory Number:	B-2246-2
Field Sample Number:	RF 1	Depth (m):	1.0 - 1.3

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on an undisturbed sample tested saturated.

SATURATION DATA Test No. 2

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.99


CONSOLIDATION DATA

Effective cons. Stress (kPa):		198.3 t100 (minutes): 1			Side drains fitted: No			
-	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*99.84	*50.07	1969.00	21.4	1561	0.6910	82	0.000
CONSOLIDATED	98.91	49.60	1932.32	24.5	1606	0.6437	100	2.639 Determined
FINAL (After shear)	84.89	53.54	2251.42	24.5	1605	0.6440	100	Dereillillen
Initial pore pressure (kPa):	535.7	Fin	al pore pres	ssure (kPa):	349.0	PWP dissi	oation (%): 1	00
*: Measured dimensions; a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.30						
Initial pore pressure (kPa):	350.7	Initial effec	ctive stress (kPa):	198.3			
Parameters at failure:							
Failure Criterion:	Max. Effective I	Principle Stres	ss Ratio				
Axial strain (%):	6.20	6					
Deviator stress (kPa):	20 COMMUNICATION CO.)		
Excess pore pressure (kPa	1): 158	3.1		σ1	σ1'	σ3	σ3'
Effective principle stress ra	tio: 5.0	51		361.2	203.1	198.3	40.2

Deviator stress corrections: Membrane correction: 1.1 kPa

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compres	sion T	est l	Results
I I I MANIMI	OULIPIOO	O. O		TO COLLEC

Project:	Mzimvubu Water Project	Date Received:	2013/10/07
Job Number:	2013-B-2246	Laboratory Number:	B-2246-2
Field Sample Number:	RF 1	Depth (m):	1.0 - 1.3

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on an undisturbed sample tested saturated.

SATURATION DATA Test No. 3

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97

CONSOLIDATION DATA

Effective cons. Stress (kPa):		398.4 t100 (minutes): 4			Side	Side drains fitted: No		
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*99.73	*50.14	1974.51	23.3	1422	0.8553	72	0.000
CONSOLIDATED	97.84	49.18	1899.84	26.1	1508	0.7501	92	2.639 Determined
FINAL (After shear)	90.83	51.05	2046.52	26.1	1507	0.7514	92	Determinen
Initial pore pressure (kPa):	735.6	Fir	al pore pre	ssure (kPa):	355.0	PWP dissip	oation (%): 10	00
*: Measured dimensions; a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.30							
Initial pore pressure (kPa):	356.6	Initial effective stress (kPa): 398.4						
Parameters at failure:								
Failure Criterion:	Max. Deviator	r Stress						
Axial strain (%):	1.	.15						
Deviator stress (kPa):	21	13.8			Principle Stresses (kPa)			
Excess pore pressure (kPa	a): 28	84.9			σ1	σ1'	σ3	σ3'
Effective principle stress ra	atio: 2.	.885		5	612.2	327.3	398.4	113.5
Deviator stress corrections:	Membrane corr	rection: 1.1	kPa	·				

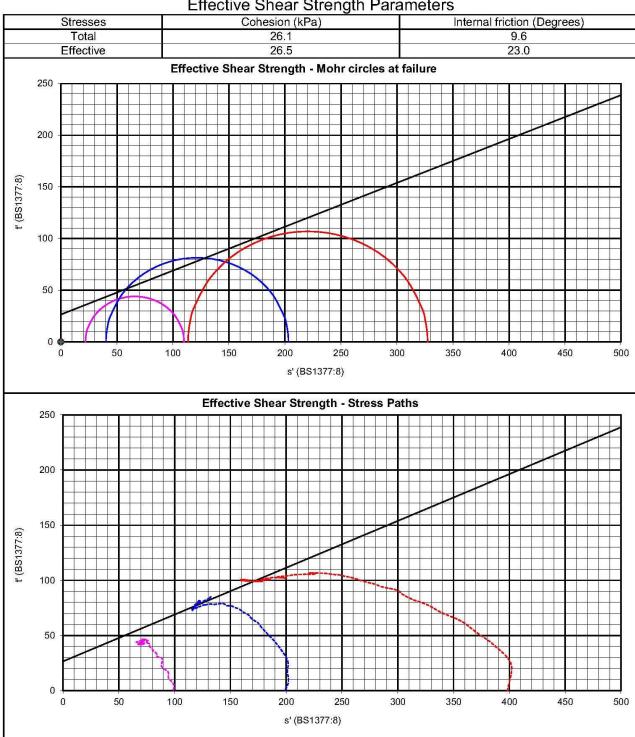
Deviator Stress and dPore Pressure vs Strain Effective principle stress ratio 400 5 350 4.5 300 Stress Ratio 250 Deviator Stress (kPa) 3.5 200 3 Effective Principle 150 2.5 100 50 1.5 0 -50 2.0 6.0 8.0 Axial Strain %

PO Box 82223, Southdale 2135

Field Sample Reference:

Project: Job Number:

Tel:+27 (0)11 835 3117


E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

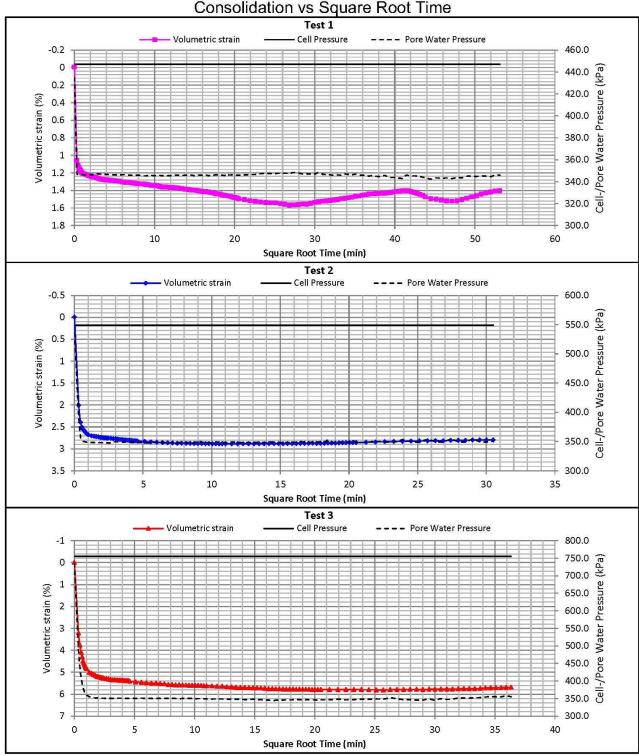
Civil Engineering Testing Laboratory

Triaxial Compression Test Results					
Mzimvubu Water Project	Date Received:	2013/10/07			
2013-B-2246	Laboratory Number:	B-2246-2			
	, .	10 10			

Effective Shear Strength Parameters

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117


E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzimvubu Water Project	Date Received:	2013/10/07
Job Number:	2013-B-2246	Laboratory Number:	B-2246-2
Field Sample Reference:	RF 1	Depth (m):	1.0 - 1.3

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compres	sion T	est l	Results
I I I MANIMI	OULIPIOO	O. O		TO COLLEC

Project:	Mzimvubu Water Project	Date Received:	2013/10/07
Job Number:	2013-B-2246	Laboratory Number:	B-2246-3
Field Sample Number:	LF 1 Top	Depth (m):	1.0 - 1.2

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on an undisturbed sample tested saturated.

SATURATION DATA Test No. 1

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.97

CONSOLIDATION DATA

Effective cons. Stress (kPa):		100.3 t100 (minutes): 4			Side	Side drains fitted: No		
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*99.62	*49.99	1962.71	38.9	1118	1.2165	79	0.477
CONSOLIDATED	99.23	49.79	1947.26	52.7	1131	1.1904	110	2.477 Determined
FINAL (After shear)	92.41	51.60	2090.83	52.7	1131	1.1904	110	Determinen
Initial pore pressure (kPa):	432.4	Final pore pressure (kPa): 346.0 PWP dissipation (9			oation (%): 10	00		
*: Measured dimensions; a	ll other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.30							
Initial pore pressure (kPa):	345.7	Initial effective stress (kPa): 100.3						
Parameters at failure:								
Failure Criterion:	Max. Deviator	Stress						
Axial strain (%):	0.	.96						
Deviator stress (kPa):	13	30.4			Principle Stresses (kPa)			
Excess pore pressure (kPa	a): 54	4.6			σ1	σ1'	σ3	σ3'
Effective principle stress ra	atio: 3.	.851			230.8	176.2	100.3	45.8
Deviator stress corrections:	Membrane corr	rection: 1.1 l	кРа					

Axial Strain %

Deviator Stress and dPore Pressure vs Strain

Civilab (Proprietary) Limited. Registration No.: 1998/019071/07

8.0

36 Fourth Str., Booysens Reserve, Johannesburg 2091

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compres	sion T	est l	Results
I I I MANIMI	OULIPIOO	O. O		TO COLLEC

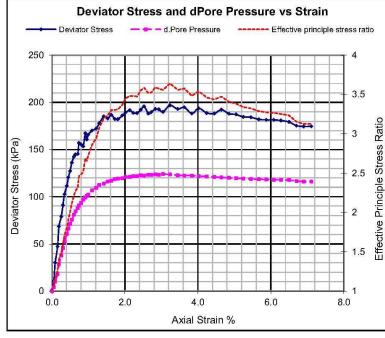
Project:	Mzimvubu Water Project	Date Received:	2013/10/07
Job Number:	2013-B-2246	Laboratory Number:	B-2246-3
Field Sample Number:	LF 1 Top	Depth (m):	1.0 - 1.2

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on an undisturbed sample tested saturated.

SATURATION DATA Test No. 2

Saturation method: Alternating	g increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 1.00


CONSOLIDATION DATA

Effective cons. Stress (kPa):		198.1	t10	0 (minutes):	4	Side drains fitted: No		
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific
	mm	mm	mm ²	Content %	kg/m ³	Ratio	%	Gravity
INITIAL (Before saturation)	*99.74	*49.71	1940.78	38.7	1121	1.2096	79	0.477
CONSOLIDATED	98.42	49.05	1889.27	50.5	1168	1.1216	111	2.477 Determined
FINAL (After shear)	91.41	50.89	2033.96	50.5	1167	1.1224	111	Detellillen
Initial pore pressure (kPa): 533.9 Final pore pressure (kPa): 347.0 PWP dissipation (%): 100								00
*: Measured dimensions; a	l other dim	ensions are	calculated.					

SHEAR DATA

Rate of strain (%/hour):	0.50							
Initial pore pressure (kPa):	347.9	Initial	effective stress (kPa):	198.1				
Parameters at failure:								
Failure Criterion:	Max. Deviator	Stress						
Axial strain (%):	3.2	:3						
Deviator stress (kPa):	190	6. 7			ı	Principle Str	esses (kPa)	
Excess pore pressure (kPa	a): 12:	3.6		σ	1	σ1'	σ3	σ3'
Effective principle stress ra	itio: 3.6	41		394	4.8	271.2	198.1	74.5

Deviator stress corrections: Membrane correction: 1.1 kPa

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

Triaxial	Compres	sion T	est l	Results
I I I MANIMI	OULIPIOO	O. O		TO COLLEC

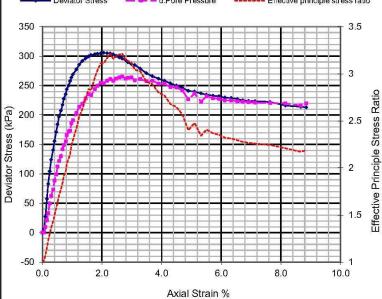
Project:	Mzimvubu Water Project	Date Received:	2013/10/07
Job Number:	2013-B-2246	Laboratory Number:	B-2246-3
Field Sample Number:	LF 1 Top	Depth (m):	1.0 - 1.2

This test was carried out in accordance with BS 1377:Part 8:1990 Clause 4,5,6,7

Remarks: A Consolidated Undrained test on an undisturbed sample tested saturated.

Test No. 3 **SATURATION DATA**

Saturation method: Alternating	increments of cell- & back pressure	
Pressure increments applied (kPa):	50,70,100,100,100	Differential pressure (kPa): 10.0
Final cell pressure (kPa): 353.0	Final back pressure (kPa): 343.0	Final B parameter: 0.96


CONSOLIDATION DATA

Effective cons. Stress (kPa):		398.6 t100		0 (minutes):) (minutes): 16		Side drains fitted: No		
	Height	Diameter	Area	Moisture	Dry Density	Void	Saturation	Specific	
	mm	mm	mm^2	Content %	kg/m ³	Ratio	%	Gravity	
INITIAL (Before saturation)	*99.58	*50.14	1974.51	34.7	1136	1.1801	73	0 177	
CONSOLIDATED	98.14	49.41	1917.55	47.1	1188	1.0858	107	2.477 Determined	
FINAL (After shear)	89.45	51.76	2103.89	47.1	1187	1.0867	107	Determinen	
Initial pore pressure (kPa):	730.1	Fir	al pore pre	ssure (kPa):	349.5	PWP dissi	pation (%): 10	00	
*: Measured dimensions; a	ll other dim	ensions are	calculated.						

SHEAR DATA

Rate of strain (%/hour):	0.35						
Initial pore pressure (kPa):	349.4	Initial	effective stress	(kPa): 398.6			
Parameters at failure:	11 State Control of Control	WARRANG SE		\$			
Failure Criterion:	Max. Deviator	Stress					
Axial strain (%):	2.0	06					
Deviator stress (kPa):	30)5.6			Principle St	resses (kPa)
Excess pore pressure (kP	a): 25	3.9		σ1	σ1'	σ3	σ3'
Effective principle stress ra	atio: 3.1	111		704.2	450.3	398.6	144.8
Deviator stress corrections:	Membrane corre	ection: 1.1 k	Pa				•

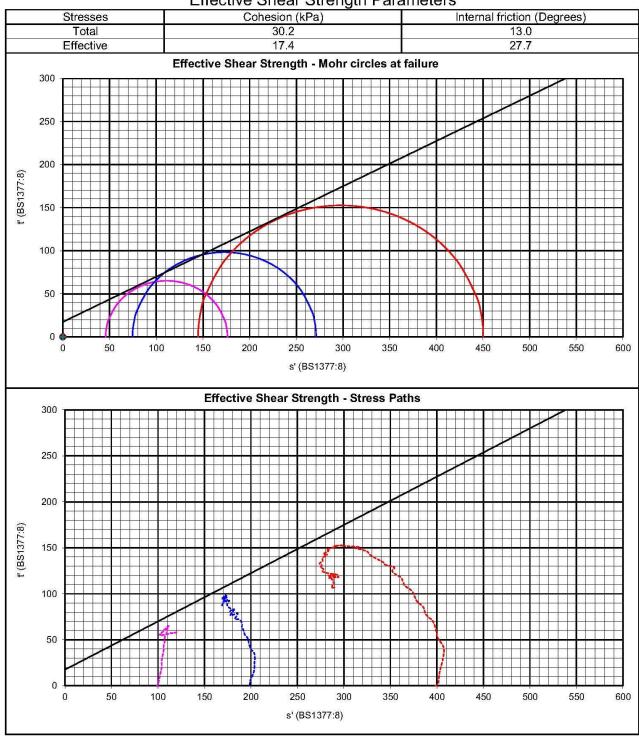
Deviator Stress and dPore Pressure vs Strain Effective principle stress ratio 350 3.5 300

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117

Field Sample Reference:

Project: Job Number:


E-mail: jhb@civilab.co.za Website: www.civilab.co.za

Civilab

Civil Engineering Testing Laboratory

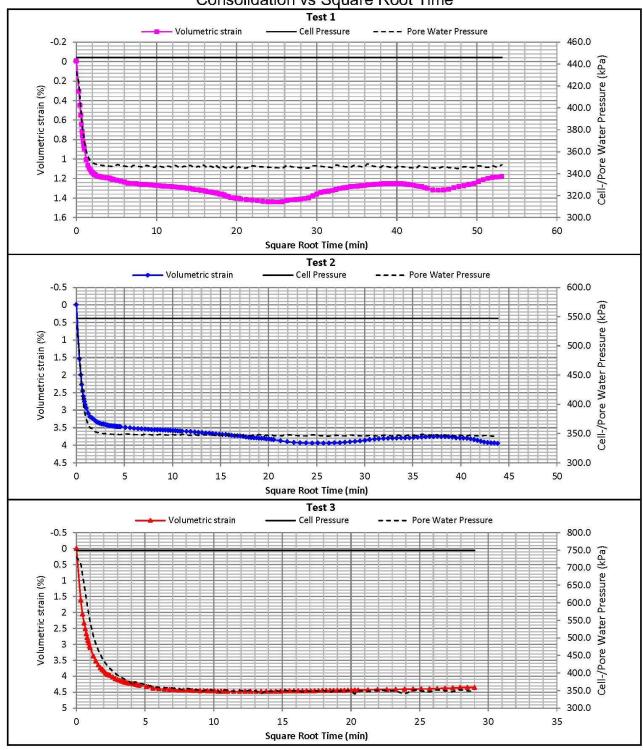
Triaxial Compression Test Results Mzimvubu Water Project Date Received: 2013/10/07 2013-B-2246 Laboratory Number: B-2246-3 LF 1 Top Depth (m): 1.0 - 1.2

Effective Shear Strength Parameters

E-mail: jhb@civilab.co.za Website: www.civilab.co.za

PO Box 82223, Southdale 2135

Tel:+27 (0)11 835 3117


Civilab

Civil Engineering Testing Laboratory

Triaxial Compression Test Results

Project:	Mzim∨ubu Water Project	Date Received:	2013/10/07
Job Number:	2013-B-2246	Laboratory Number:	B-2246-3
Field Sample Reference:	LF 1 Top	Depth (m):	1.0 - 1.2

Consolidation vs Square Root Time

H 6

CONSOLIDATION

FEASIBILITY STUDY FOR THE MZIMVUBU WATER PROJECT

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Falling Head Permeability Test Results

Project:	MZIMVUBU WATER PROJECT		
Project No:	2013-B-2246	Date:	28/11/2013

Lab.	Field	Depth	Moisture	Contents	Dry dens	ity Kg/m³	Coefficie	nt of Permeat	oility (m/s)
Sample	Sample	(m)	Before	After	Initial	As		nge	Average
Reference	Reference		Test (%)	Test (%)	Assistant Drake.	tested	Minimum	Maximum	
2246-2	RF 1	1.0 - 1.3	19.3	22.4	1548	1594	1.9E-08	2.7E-08	2.3E-08
2246-3	LF 1 TOP	1.0 - 1.2	36.3	53.4	1016	1056	1.0E-08	2.0E-08	1.4E-08

Remarks: Undisturbed samples.

Saturated and tested under a load of 100kPa. Densities reported are under a load of 100kPa.

Civilab (Pty) Limited Registration No: 1998/019071/07
BRANCHES: CENTURION • JOHANNESBURG • RUSTENBURG

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIN	IVUBU WATER	PROJEC	Γ			Test 1
Project No.:	2013	-B-2246		Sample No.:		2246-3A	
Borehole No:	LF 1	TOP		Depth:		1.0 - 1.2	
Date Received:	07/10	0/2013		Date Tested:		02/12/2013	
Remarks: An ur	ndisturbed	l sample tested	soaked.				
Machine No.	5	Ring No.	16	Height (mm)	19.95	Diameter (mm)	75.95

Masses for Water Content Determination (g)

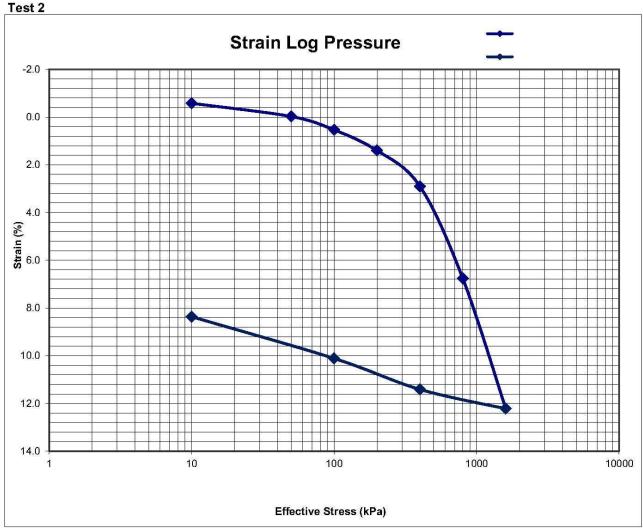
Wet Sample and Ring		Dry Sample	Ring	Water Content			
Before Test	After Test	and Ring	Only	Before Test	After Test		
244.6	253.6	206.7	106.78	37.9%	46.9%		

Pre-Determined Particle Specific Gravity 2.477

			ra zamovnam za umrum	aramete		Clavity	2.711	ek				
Void Ratio	1.2406		Degree (of Satura	ation (%)	75.7		Dry Den	sity (Kg/r	n3)	1106	
-		N/128		20070000				es engage	present T	202021	5920	
Effect. Stress		10	50	100	200	400	800	1600	400	100	10	(
Dial Correction		0	37	68	101	170	220	321	196	112	45	(
HH:MM:SS	√Minutes	Some Management of America			adings in I			7		Initial Dia	l Reading	13504
00:00:00	0.00	13504		13388		13123		11934				
00:00:06	0.32			13384		12914		11370				
00:00:12	0.45			13383		12902		11340				
00:00:18	0.55			13381		12893		11316				
00:00:24	0.63			13381		12888		11296				
00:00:30	0.71			13380		12886		11278				
00:00:42	0.84			13378		12880	1	11252				
00:01:00	1.00			13377		12873		11218				
00:01:30	1.22			13375		12866		11178				
00:02:00	1.41			13373		12861		11148				
00:04:00	2.00		Î	13369		12850		11071			Î	
00:07:00	2.65			13367		12838		10992				
00:10:00	3.16			13364		12834		10974				
00:15:00	3.87		Ì	13362		12824		10946			i	
00:20:00	4.47	i	i	13361		12820		10920			i	
00:30:00	5.48		i	13359		12819		10895			i	
00:40:00	6.32			13357		12814		10868				
01:00:00	7.75			13353		12807						
01:30:00	9.49			13350		12800		10837				
02:00:00	10.95		ì	13349		12794		10824	11031	11374		
03:00:00	13.42		1	13345		12784		10807	1	i	11790	
04:00:00	15.49			13342		12778		10790			CONTRACTOR ASSESSED	
06:00:00	18.97			13336		12769		10780				
08:00:00	21.91	13619				12764		10770				
16:00:00	30.98		13471					governoscali (Al				
24:00:00	37.95		resource services		13123	12755	11934	10745	 			
72:00:00	65.73			13328								
End of Primar		13619	13471	13328	13123	12755	11934	10745	11031	11374	11790	
Number of Re	and described and the second	2	1	24	1	25	1	24	1	1	1	ĺ

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories


Consolidation Tests

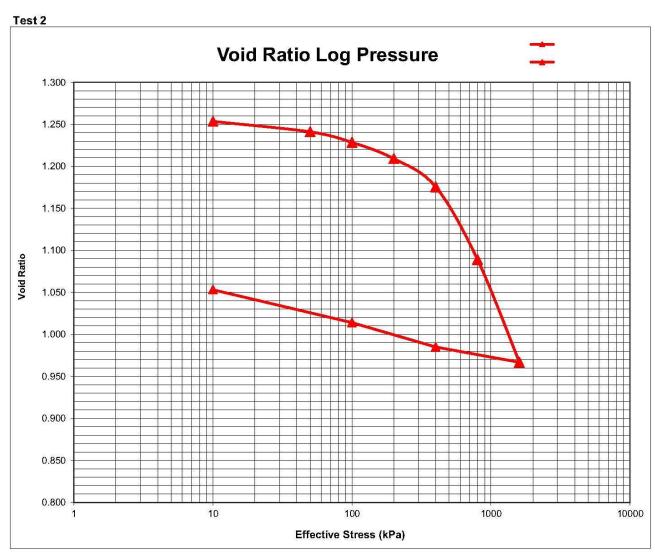
Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2246	Sample No.:	2246-3A
Borehole No:	LF 1 TOP	Depth:	1.0 - 1.2
Date Received	1:07/10/2013	Date Tested:	02/12/2013

Test 1

Effect.Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.58	-0.02	0.54	1.40	2.90	6.77	12.22	11.41	10.12	8.37	
Mv (1/MPa)		0.1391	0.1123	0.0862	0.0749	0.0966	0.0682	0.0067	0.0433	0.1944	
Void Ratio	1.2535	1.241	1.2285	1.2091	1.1756	1.089	0.9668	0.9849	1.0139	1.0531	

Investment Facility Company 842 (Pty) Limited trading as Civilab. Registration No: 1998/019071/07 BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID 36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135 Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503

Email: jhb@civilab.co.za • Website: www.civilab.co.za


Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2246	Sample No.:	2246-3A
Borehole No:	LF 1 TOP	Depth:	1.0 - 1.2
Date Receive	c07/10/2013	Date Tested:	02/12/2013

Test 1

Effect. Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.58	-0.02	0.54	1.40	2.90	6.77	12.22	11.41	10.12	8.37	
Mv (1/MPa)		0.1391	0.1123	0.0862	0.0749	0.0966	0.0682	0.0067	0.0433	0.1944	
Void Ratio	1.2535	1.241	1.2285	1.2091	1.1756	1.089	0.9668	0.9849	1.0139	1.0531	

Investment Facility Company 842 (Pty) Limited trading as Civilab. Registration No: 1998/019071/07

BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

FEASIBILITY STUDY FOR THE MZIMVUBU WATER PROJECT

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135 Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Falling Head Permeability Test Results

Project:	MZINVUBU WATER PROJECT		
Project No:	2013-B-2004	Date:	17/10/2013

Lab.	Field	Depth	Moisture	Contents	Dry dens	ity Kg/m³	Coefficie	nt of Permeat	oility (m/s)
Sample	Sample	(m)	Before	After	Initial	As		nge	Average
Reference	Reference		Test (%)	Test (%)	0.00.00000000	tested	Minimum	Maximum	
2004-11	Mix C2+C4A+C7+C8+C10	=	35.0	32.9	1392	1469	5.1E-10	1.6E-09	1.0E-09
2004-22	Mix C12+C18+C22+C28+C30	2	25.7	27.6	1506	1538	7.3E-09	8.9E - 09	8.4E-09
2004-29 *	Mix F5+F8+F10	ä	10.0	14.8	1957	1990	1.5E-09	2.6E-09	2.1E-09
2004-39 *	Mix F25+F29+F34+F37+F39	-	11.3	12.6	1961	2020	1.9E - 09	3.3E-09	2.6E-09
						,			

Remarks:

Samples remoulded to 98% Proctor.

* = Samples remoulded to 95% Proctor. Saturated and tested under a load of 100kPa. Densities reported are under a load of 100kPa.

Interim results

Civilab (Pty) Limited Registration No: 1998/019071/07
BRANCHES: CENTURION • JOHANNESBURG • RUSTENBURG

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIN	IVUBU WATER	PROJEC	Τ			Test 1
Project No.:	2013	-B-2246		Sample No.:		2246-2A	
Borehole No:	RF 1			Depth:		1.0 - 1.3	
Date Received:	07/10	0/2013		Date Tested:		02/12/2013	
Remarks: An un	disturbed	l sample tested	soaked.				
Machine No.	6	Ring No.	26	Height (mm)	18.7	Diameter (mm)	75.6

Masses for Water Content Determination (g)

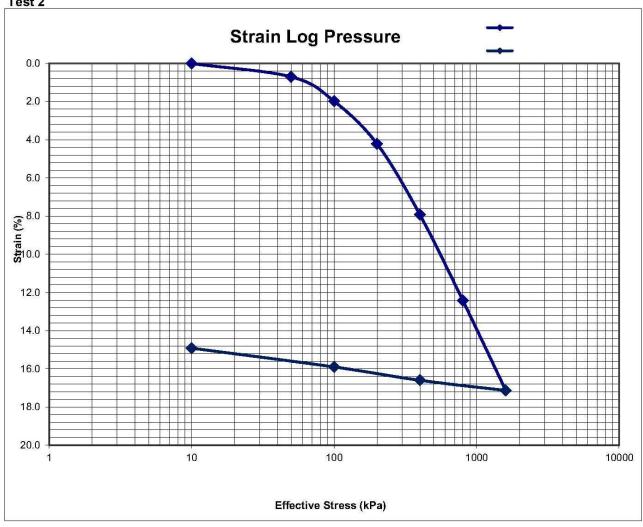
Wet Sample and Ring		Dry Sample	Ring	Water C	ontent
Before Test	After Test	and Ring	Only	Before Test	After Test
243.2	242.7	214.2	93.08	23.9%	23.5%

Pre	Determined Particle Specific Gravity	2.639
	Initial Parameters	100
₹ .	D (0 1 C (0/) 70.0	

Void Ratio	0.8289		Degree :	of Satura	ition (%)	76.2		Dry Den	sity (Kg/r	m3)	1443	
·												
Effect. Stress	(kPa)	10	50	100	200	400	800	1600	400	100	10	0
Dial Correction		0	50	82	122	189	299	417	231	117	42	0
HH:MM:SS	√Minutes				adings in N					Initial Dia	l Reading	13794
00:00:00	0.00	13794		13611		12883		11171				
00:00:06	0.32			13460		12387		10478				
00:00:12	0.45			13450		12365		10446				
00:00:18	0.55			13444		12346		10423				
00:00:24	0.63			13441		12335		10407				
00:00:30	0.71			13438		12324		10397	0			
00:00:40	0.82					12312	5. 6		:			
00:00:42	0.84			13433				10376				
00:01:00	1.00			13429		12297		10356				
00:01:30	1.22			13423		12281		10338				
00:02:00	1.41			13418		12271		10324				
00:04:00	2.00			13411		12256		10296				
00:07:00	2.65			13400		12228		10273				
00:10:00	3.16			13399		12221		10264				
00:15:00	3.87			13394		12210		10254				
00:20:00	4.47			13390		12203	W	10246				
00:30:00	5.48			13388		12193		10237				
00:40:00	6.32			13385		12185		10227	ĺ			
01:00:00	7.75			13378		12180						
01:30:00	9.49			13373		12175		10214				
02:00:00	10.95			13371		12160		10209	10458	10703		
03:00:00	13.42			13367		12148		10200			10962	
04:00:00	15.49			13362		12143		10193				
06:00:00	18.97			13355		12135	8	10188				
08:00:00	21.91	13791				12130		10183				
16:00:00	30.98		13611									
24:00:00	37.95				12883	12122	11171	10173				
72:00:00	65.73			13340			.3					
End of Primar	/ Cons	13791	13611	13340	12883	12122	11171	10173	10458	10703	10962	
Number of Re	adings:	2	1	24	1	25	1	24	1	1	1	C

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories


Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2246	Sample No.:	2246-2A
Borehole No:	RF 1	Depth:	1.0 - 1.3
Date Received	1: 07/10/2013	Date Tested:	02/12/2013

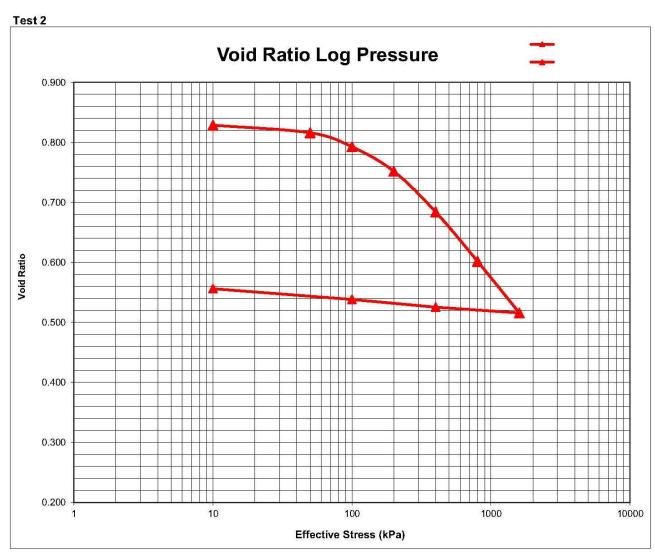
Test 1

Effect.Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	0.02	0.71	1.99	4.22	7.93	12.43	17.13	16.60	15.90	14.92	
Mv (1/MPa)		0.1738	0.2556	0.2230	0.1856	0.1124	0.0588	0.0044	0.0234	0.1093	
Void Ratio	0.8286	0.8159	0.7926	0.7518	0.6839	0.6016	0.5156	0.5253	0.5381	0.5561	

Investment Facility Company 842 (Pty) Limited trading as Civilab. Registration No: 1998/019071/07 BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135 Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503

Email: jhb@civilab.co.za • Website: www.civilab.co.za


Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIMVUBU WATER PROJECT	No. 1	
Project No.:	2013-B-2246	Sample No.:	2246-2A
Borehole No:	RF 1	Depth:	1.0 - 1.3
Date Receive	c07/10/2013	Date Tested:	02/12/2013

Test 1

Effect. Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	0.02	0.71	1.99	4.22	7.93	12.43	17.13	16.60	15.90	14.92	
Mv (1/MPa)		0.1738	0.2556	0.2230	0.1856	0.1124	0.0588	0.0044	0.0234	0.1093	
Void Ratio	0.8286	0.8159	0.7926	0.7518	0.6839	0.6016	0.5156	0.5253	0.5381	0.5561	

Investment Facility Company 842 (Pty) Limited trading as Civilab. Registration No: 1998/019071/07

BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIN	IVUBU WATER	PROJEC	CT			Test 1
Project No.:	2013	-B-2004		Sample No.:		2004-11	
Borehole No:	Mix (C2+C4A+C7+C8	+C10	Depth:		0.4 - 2.5	
Date Received:	23/0	3/2013		Date Tested:		21/10/2013	
Remarks: A rem	oulded s	ample tested so	aked.				
Machine No.	1	Ring No.	4	Height (mm)	19.45	Diameter (mm)	75.55

Masses for Water Content Determination (g)

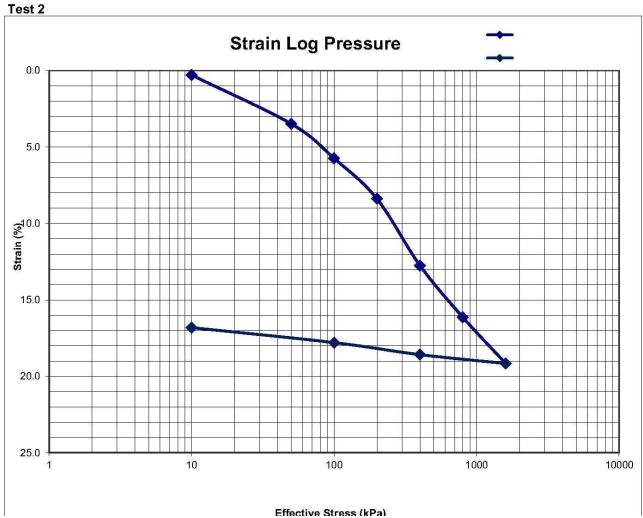
Wet Sample a	and Ring	Dry Sample	Ring	Water C	ontent	
Before Test	After Test	and Ring	Only	Before Test	After Test	
250.9	241.0	210.7	87.13	32.5%	24.5%	

Pre-Determined Particle Specific Gravity 2.506

	L	I TO DOTO	minou	i di tiolo	opcomo .	Stavity	2.000	di .				
			Initial Pa	aramete	rs		18 16					
Void Ratio	0.7683	[Degree (of Satura	ation (%)	106.1		Dry Den	sity (Kg/	m3)	1417	
	-				- 771							
Effect. Stress	(kPa)	10	50	100	200	400	800	1600	400	100	10	0
Dial Correction	n (u)	0	39	65	96	137	194	284	182	123	65	0
HH:MM:SS	√Minutes			Dial Re	adings in M	licrons				Initial Dia	al Reading	12824
00:00:00	0.00	12824										
02:00:00	10.95								9028	9240		
03:00:00	13.42										9489	
18:00:00	32.86	12766										
24:00:00	37.95		12107		11096	10206	9491	8814				
72:00:00	65.73			11641								
End of Prima	ry Cons	12766	12107	11641	11096	10206	9491	8814	9028	9240	9489	
Number of Re	eadings:	2	1	1	1	1	1	1	1	1	1	0

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

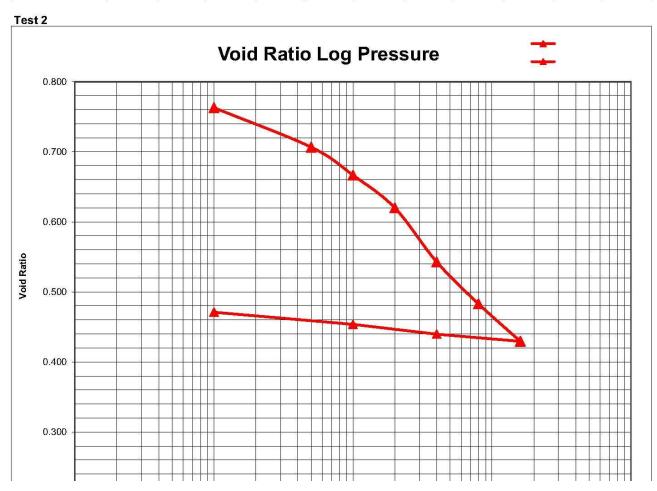

Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2004	Sample No.:	2004-11
Borehole No:	Mix C2+C4A+C7+C8+C10	Depth:	0.4 - 2.5
Date Received	1: 23/08/2013	Date Tested:	21/10/2013

Test 1

Effect.Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	0.30	3.49	5.75	8.39	12.76	16.14	19.16	18.58	17.79	16.81	3
Mv (1/MPa)		0.7969	0.4524	0.2643	0.2183	0.0846	0.0377	0.0048	0.0262	0.1091	
Void Ratio	0.763	0.7066	0.6666	0.6199	0.5427	0.4829	0.4295	0.4397	0.4536	0.471	

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za


Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2004	Sample No.:	2004-11
Borehole No:	Mix C2+C4A+C7+C8+C10	Depth:	0.4 - 2.5
Date Receive	c 23/08/2013	Date Tested:	21/10/2013

Test 1

Effect. Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	0.30	3.49	5.75	8.39	12.76	16.14	19.16	18.58	17.79	16.81	
Mv (1/MPa)		0.7969	0.4524	0.2643	0.2183	0.0846	0.0377	0.0048	0.0262	0.1091	
Void Ratio	0.763	0.7066	0.6666	0.6199	0.5427	0.4829	0.4295	0.4397	0.4536	0.471	

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIN	IVUBU WATER	PROJECT	•			Test 1
Project No.:	2013	-B-2004		Sample No.:		2004-22	
Borehole No:	Mix (C12+C18+C22+	C28+C30	Depth:			
Date Received:	23/0	3/2013		Date Tested:		21/10/2013	
Remarks: A rem	oulded s	ample tested so	aked.				
Machine No.	2	Ring No.	19	Height (mm)	18.5	Diameter (mm)	76.1

Masses for Water Content Determination (g)

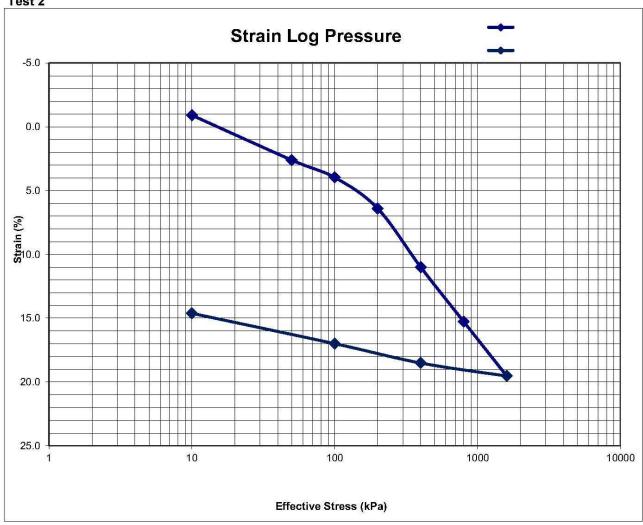
Wet Sample	and Ring	Dry Sample	Ring	Water C	ontent
Before Test	After Test	and Ring	Only	Before Test	After Test
249.9	248.7	219.1	90.64	24.0%	23.0%

Pre-Determined Particle Specific Gravity 2.657

		Pre-Dete	rminea i	Particle :	Specific	Gravity	2.657					
***************************************			Initial Pa	aramete	rs		2					
Void Ratio	0.7404	1	Degree o	of Satura	ation (%)	86.0		Dry Den	sity (Kg/ı	m3)	1527	
Effect. Stress	(kPa)	10	50	100	200	400	800	1600	400	100	10	C
Dial Correction	n (u)	0	56	78	112	151	208	280	226	177	117	C
HH:MM:SS	√Minutes			Dial Re	adings in N	/licrons				Initial Dia	l Reading	11984
00:00:00	0.00	11984										
02:00:00	10.95								8332	8662		
03:00:00	13.42		ĺ								9162	
18:00:00	32.86	12151										
24:00:00	37.95		11445		10687	9797	8950	8090				
72:00:00	65.73			11171	6							
End of Prima	ry Cons	12151	11445	11171	10687	9797	8950	8090	8332	8662	9162	
Number of Re	eadings:	2	1	1	1	1	1	1	-1	1	1	0

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories


Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2004	Sample No.:	2004-22
Borehole No:	Mix C12+C18+C22+C28+C30	Depth:	E :
Date Received	1:23/08/2013	Date Tested:	21/10/2013

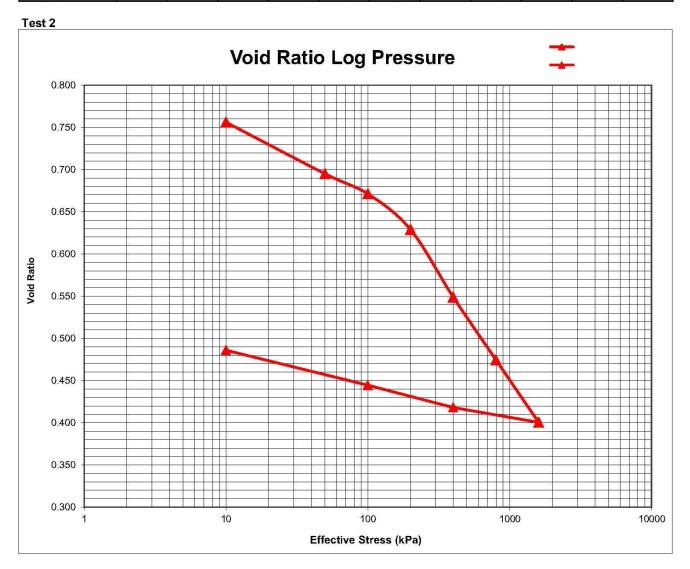
Test 1

Effect.Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.90	2.61	3.97	6.41	11.01	15.28	19.54	18.52	17.00	14.62	
Mv (1/MPa)		0.8784	0.2724	0.2432	0.2300	0.1068	0.0532	0.0085	0.0506	0.2643	
Void Ratio	0.7561	0.695	0.6713	0.6289	0.5489	0.4746	0.4004	0.4181	0.4446	0.4859	

Investment Facility Company 842 (Pty) Limited trading as **Civilab**. Registration No: 1998/019071/07

BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za



Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2004	Sample No.:	2004-22
Borehole No:	Mix C12+C18+C22+C28+C30	Depth:	:=
Date Receive	23/08/2013	Date Tested:	21/10/2013

Test 1

Effect. Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.90	2.61	3.97	6.41	11.01	15.28	19.54	18.52	17.00	14.62	
Mv (1/MPa)		0.8784	0.2724	0.2432	0.2300	0.1068	0.0532	0.0085	0.0506	0.2643	
Void Ratio	0.75613	0.69498	0.67128	0.62894	0.54888	0.47456	0.40043	0.41811	0.44455	0.48594	

Investment Facility Company 842 (Pty) Limited trading as **Civilab**. Registration No: 1998/019071/07

BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIN	IVUBU WATER	PROJEC	T			Test 1
Project No.:	2013-	B-2004		Sample No.:		2004-29	
Borehole No:	MIX F	5+F8+F10		Depth:		827	
Date Received:	23/08	/2013		Date Tested:		11/12/2013	
Remarks: A rem	oulded sa	ample tested so	aked.				
Machine No.	12	Ring No.	19	Height (mm)	18.5	Diameter (mm)	76.1

Masses for Water Content Determination (g)

Wet Sample	and Ring	Dry Sample	Ring	Water C	ontent
Before Test	After Test	and Ring	Only	Before Test	After Test
271.7	277.3	254.8	90.64	10.3%	13.7%

Pre-Determined Particle Specific Gravity 2.566

		I TO DOR	minou	i di tiolo	opcomo	Cluvity	2.000					
		E	Initial P	aramete	rs		58 92					
Void Ratio	0.3153		Degree	of Satura	ation (%)	83.8		Dry Den	sity (Kg/	m3)	1951	
	-				200	v 100	U 15-	100				
Effect. Stress	(kPa)	10	50	100	200	400	800	1600	400	100	10	0
Dial Correction	n (u)	0	41	67	107	141	188	257	177	112	39	0
HH:MM:SS	√Minutes			Dial Re	adings in N	/licrons				Initial Dia	al Reading	13839
00:00:00	0.00	13839										
02:00:00	10.95								12238	12500		
03:00:00	13.42	ĺ					0				13106	
24:00:00	37.95			13658		13124	12669	12055				
72:00:00	65.73	13877			13416							
96:00:00	75.89		13821									
End of Prima	ry Cons	13877	13821	13658	13416	13124	12669	12055	12238	12500	13106	
Number of Re	eadings:	2	1	1	1	1	1	1	1	1	1	0

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Consolidation Tests

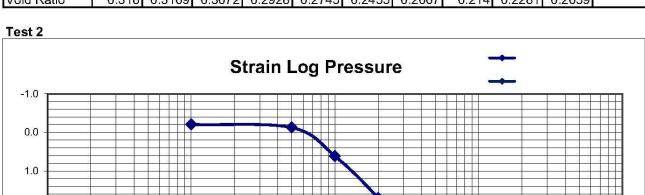
Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2004	Sample No.:	2004-29
Borehole No:	MIX F5+F8+F10	Depth:	8
Date Received	1:23/08/2013	Date Tested:	11/12/2013

Test 1

2.0

Strain (%) 0.8

5.0


6.0

7.0

8.0

9.0

Effect.Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.21	-0.12	0.62	1.71	3.10	5.31	8.25	7.70	6.63	3.75	
Mv (1/MPa)		0.0203	0.1481	0.1092	0.0697	0.0551	0.0368	0.0046	0.0355	0.3201	
Void Ratio	0.318	0.3169	0.3072	0.2928	0.2745	0.2455	0.2067	0.214	0.2281	0.2659	

Investment Facility Company 842 (Pty) Limited trading as **Civilab**. Registration No: 1998/019071/07

BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

100

Effective Stress (kPa)

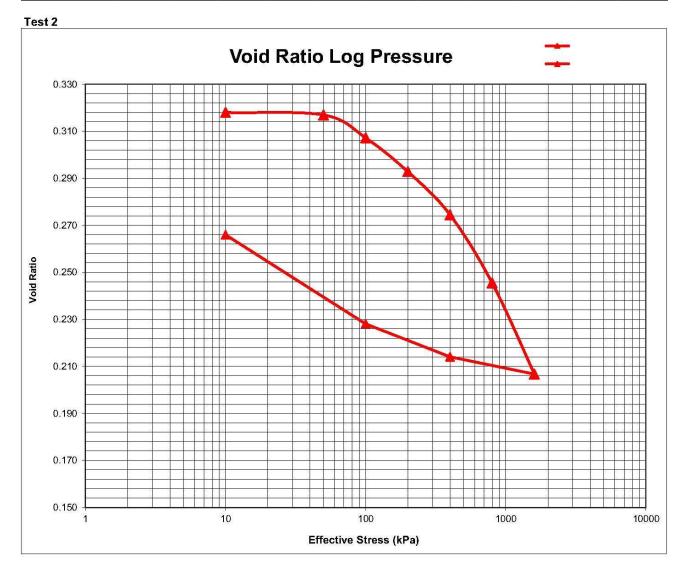
1000

10000

10

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135 Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503

Email: jhb@civilab.co.za • Website: www.civilab.co.za



Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2004	Sample No.:	2004-29
Borehole No:	MIX F5+F8+F10	Depth:	<u>u</u>
Date Receive	ec 23/08/2013	Date Tested:	11/12/2013

Test 1

Effect. Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.21	-0.12	0.62	1.71	3.10	5.31	8.25	7.70	6.63	3.75	
Mv (1/MPa)		0.0203	0.1481	0.1092	0.0697	0.0551	0.0368	0.0046	0.0355	0.3201	
Void Ratio	0.318	0.3169	0.3072	0.2928	0.2745	0.2455	0.2067	0.214	0.2281	0.2659	

Investment Facility Company 842 (Pty) Limited trading as **Civilab**. Registration No: 1998/019071/07

BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Consolidation Tests

Project:	MZIN	IVUBU WATER	PROJEC	Γ			Test 1
Project No.:	2013	-B-2004		Sample No.:		2004-39	
Borehole No:	Mix	-25+F29+F34+F	37+F39	Depth:			
Date Received:	23/0	8/2013		Date Tested:		21/10/2013	
Remarks: A rem	oulded s	ample tested so	aked.				
Machine No.	3	Ring No.	16	Height (mm)	19.95	Diameter (mm)	75.95

Masses for Water Content Determination (g)

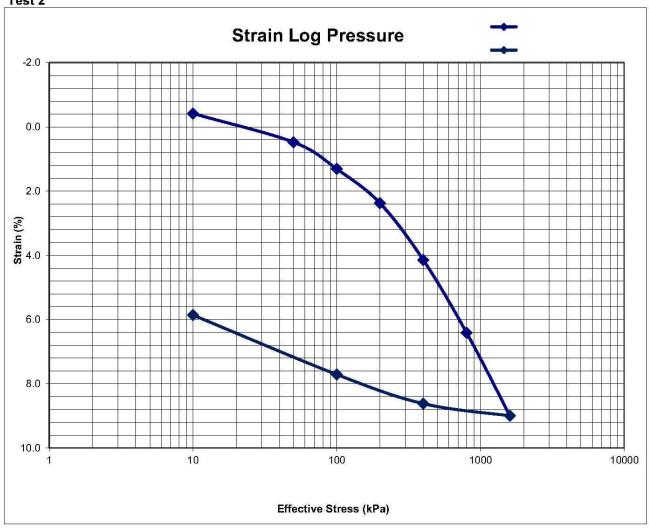
Wet Sample	and Ring	Dry Sample	Ring	Water C	ontent
Before Test	After Test	and Ring	Only	Before Test	After Test
304.0	305.3	284.5	106.78	11.0%	11.7%

Pre-Determined Particle Specific Gravity 2.717

		Pre-Dete	ermined I	Particle	Specific (Gravity	2.717					
			Initial Pa	aramete	rs							
Void Ratio	0.3818		Degree o	of Saturation (%) 78.1 Dry Density (Kg/m3) 196			1966	966				
	x == x T										872	
Effect. Stress	s (kPa)	10	50	100	200	400	800	1600	400	100	10	0
Dial Correction	on (u)	0	60	79	113	140	210	327	203	137	46	0
HH:MM:SS	√Minutes			Dial Re	adings in N	/licrons				Initial Dia	l Reading	12957
00:00:00	0.00	12957										
02:00:00	10.95								11034	11281		
03:00:00	13.42						-				11741	
18:00:00	32.86	13040										
24:00:00	37.95		12802		12370	11990	11468	10835				
72:00:00	65.73			12616								
End of Prima	ry Cons	13040	12802	12616	12370	11990	11468	10835	11034	11281	11741	
Number of Re	eadings:	2	1	1	1	1	1	1	-1	1	1	0

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za


Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2004	Sample No.:	2004-39
Borehole No:	Mix F25+F29+F34+F37+F39	Depth:	-
Date Received	1:23/08/2013	Date Tested:	21/10/2013

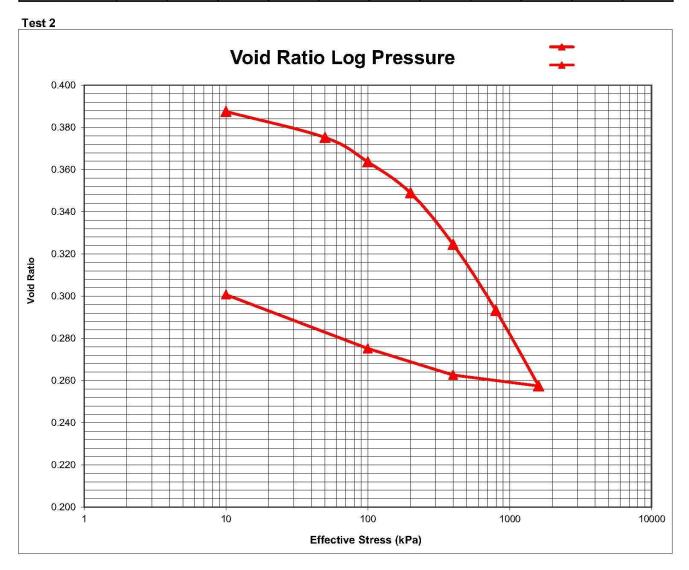
Test 1

Effect.Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.42	0.48	1.31	2.38	4.15	6.41	9.00	8.62	7.71	5.86	
Mv (1/MPa)		0.2231	0.1674	0.1063	0.0885	0.0566	0.0323	0.0031	0.0302	0.2055	
Void Ratio	0.3875	0.3752	0.3636	0.349	0.3245	0.2932	0.2575	0.2627	0.2752	0.3008	

Investment Facility Company 842 (Pty) Limited trading as **Civilab**. Registration No: 1998/019071/07
BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 Email: jhb@civilab.co.za • Website: www.civilab.co.za



Consolidation Tests

Project:	MZIMVUBU WATER PROJECT		
Project No.:	2013-B-2004	Sample No.:	2004-39
Borehole No:	Mix F25+F29+F34+F37+F39	Depth:	:E
Date Receive	23/08/2013	Date Tested:	21/10/2013

Test 1

Effect. Stress (kPa)	10	50	100	200	400	800	1600	400	100	10	
Strain (%)	-0.42	0.48	1.31	2.38	4.15	6.41	9.00	8.62	7.71	5.86	
Mv (1/MPa)		0.2231	0.1674	0.1063	0.0885	0.0566	0.0323	0.0031	0.0302	0.2055	
Void Ratio	0.38754	0.37521	0.36364	0.34896	0.32451	0.2932	0.25746	0.26266	0.27519	0.30075	

Investment Facility Company 842 (Pty) Limited trading as **Civilab**. Registration No: 1998/019071/07

BRANCHES: CENTURION • JOHANNESBURG • PIETERMARITZBURG • PINETOWN • PORT ELIZABETH • RUSTENBURG • VRYHEID

H 7

PERMIABILITY

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135 Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Falling Head Permeability Test Results

Project:	MZIMVUBU WATER PROJECT		
Project No:	2013-B-2246	Date:	28/11/2013

Lab.	Field	Depth	Moisture	Contents	Dry dens	ity Kg/m³	Coefficie	nt of Permeat	oility (m/s)
Sample Reference	Sample Reference	(m)	Before Test (%)	After Test (%)	Initial	As tested	Ra Minimum	nge Maximum	Average
2246-2	RF 1	1.0 - 1.3	19.3	22.4	1548	1594	1.9E-08	2.7E-08	2.3E-08
2246-3	LF 1 TOP	1.0 - 1.2	36.3	53.4	1016	1056	1.0E-08	2.0E-08	1.4E-08
		_					-		

Remarks: Undisturbed samples.

Saturated and tested under a load of 100kPa. Densities reported are under a load of 100kPa.

Civilab (Pty) Limited Registration No: 1998/019071/07
BRANCHES: CENTURION • JOHANNESBURG • RUSTENBURG

FallingHead-2013-B-2246

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135 Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503

E-mail: jhb@civilab.co.za • Website: www.civilab.co.za

Civil Engineering Testing Laboratories

Falling Head Permeability Test Results

Project:	MZINVUBU WATER PROJECT		
Project No:	2013-B-2004	Date:	17/10/2013

Lab.	Field	Depth	Moisture	Moisture Contents Dry density Kg/m ³		Coefficie	Coefficient of Permeabi		
Sample	Sample	(m)	Before	After	Initial	As	Ra	nge	Average
Reference	Reference		Test (%)	Test (%)	IIIIII	tested	Minimum	Maximum	Average
2004-11	Mix C2+C4A+C7+C8+C10	-	35.0	32.9	1392	1469	5.1E-10	1.6E-09	1.0E-09
2004-22	Mix C12+C18+C22+C28+C30	~	25.7	27.6	1506	1538	7.3E-09	8.9E-09	8.4E-09
2004-29 *	Mix F5+F8+F10	*	10.0	14.8	1957	1990	1.5E-09	2.6E-09	2.1E-09
2004-39 *	Mix F25+F29+F34+F37+F39	-	11.3	12.6	1961	2020	1.9E - 09	3.3E-09	2.6E-09
					S S				

Remarks:

Samples remoulded to 98% Proctor.

* = Samples remoulded to 95% Proctor. Saturated and tested under a load of 100kPa.

Densities reported are under a load of 100kPa.

Interim results

Civilab (Pty) Limited Registration No: 1998/019071/07
BRANCHES: CENTURION • JOHANNESBURG • RUSTENBURG

FallingHead-2013-B-2004

H 8

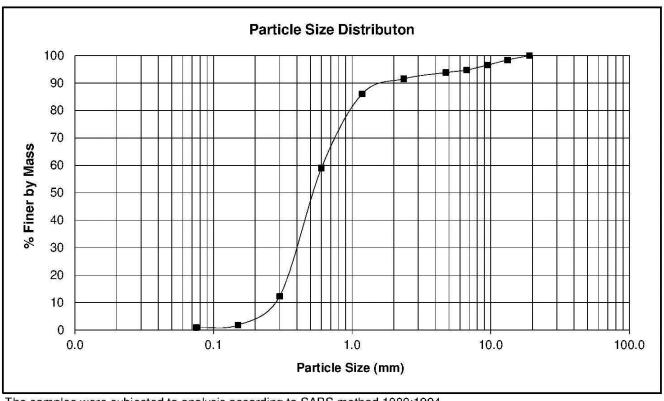
SAND

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 E-mail: jhb@civilab.co.za • Website: www.civilab.co.za



Civil Engineering Testing Laboratories

Fine Aggregate Test Results

Project	15 15	MZIMVUBU WATER PROJECT	Date :	1 OCTOBER 2013
Project No		2013-B-2004	Lab Sample Reference:	2004-40
Field Reference		S1	Remarks :	ш
Organic Impurities		N/T		

		Particle Si	ze Distribution		Physical Properties				
	Reference Test Sample Specification		Parameters	Test Sample	Specification				
		19.0	100		Fineness Modulus %	2.55			
		13 . 2	98		Dust Content	0.9			
(9)	(c)	9.5	97		Sand Equivalent %	N/T			
s (%)	(mm)	6.7	95		Moisture Content %	N/T			
Mass	Size (4 . 75	94		Water Absorption %	N/T			
by M		2.36	92		Apparent Relative Density	N/T			
r b	Particle	1 . 18	86		Bulk Relative Density	N/T			
Finer	art	0.60	59		N/T denotes Not Tested				
I LL		0.30	12		N/A denotes Not Applicable				
		0 . 15	2						
		0.075	1						

The samples were subjected to analysis according to SABS method 1083:1994.

The results reported relate only to the samples tested.

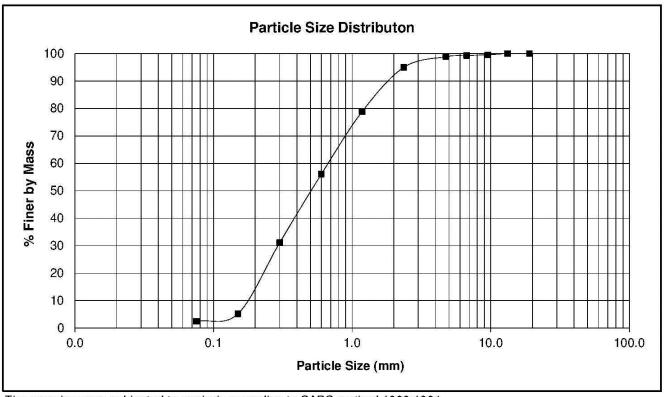
Documents may only be reproduced or published in their full context.

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 E-mail: jhb@civilab.co.za • Website: www.civilab.co.za



Civil Engineering Testing Laboratories

Fine Aggregate Test Results

Project	16	MZIMVUBU WATER PROJECT	Date	3 8	1 OCTOBER 2013
Project No	2	2013-B-2004	Lab Sample Reference	•	2004-41
Field Reference		S2	Remarks	:	ш
Organic Impurities	3 :	Lighter than Reference	-		

		Particle Si	ze Distribution		Physical Properties				
	Reference Test Sample Specification		Parameters	Test Sample	Specification				
		19.0	100		Fineness Modulus %	2.35			
		13 . 2	100		Dust Content	2.5			
(9)	Ć.	9.5	100		Sand Equivalent %	N/T			
s (%)	(mm)	6.7	99		Moisture Content %	N/T			
Mass	Size (4 . 75	99		Water Absorption %	N/T			
by M		2.36	95		Apparent Relative Density	N/T			
r b	Particle	1 . 18	79		Bulk Relative Density	N/T			
Finer	art	0.60	56		N/T denotes Not Tested				
	<u> </u>	0.30	31		N/A denotes Not Applicable				
		0.15	5						
		0.075	3						

The samples were subjected to analysis according to SABS method 1083:1994.

The results reported relate only to the samples tested.

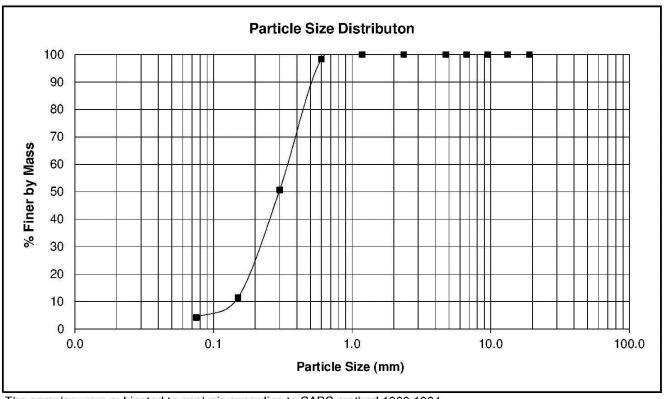
Documents may only be reproduced or published in their full context.

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 E-mail: jhb@civilab.co.za • Website: www.civilab.co.za



Civil Engineering Testing Laboratories

Fine Aggregate Test Results

Project	15 15	MZIMVUBU WATER PROJECT	Date :	1 OCTOBER 2013
Project No		2013-B-2004	Lab Sample Reference:	2004-42
Field Reference		S3	Remarks :	<u> </u>
Organic Impurities		N/T	•	

		Particle Si	ze Distribution		Physical Properties				
	Reference Test Sample Specification		Parameters	Test Sample	Specification				
		19.0	100		Fineness Modulus %	1.39			
		13 . 2	100		Dust Content	4.2			
(9)	Ć.	9.5	100		Sand Equivalent %	N/T			
s (%)	(mm)	6.7	100		Moisture Content %	N/T			
Mass	Size (4 . 75	100		Water Absorption %	N/T			
by M		2.36	100		Apparent Relative Density	N/T			
r b	Particle	1 . 18	100		Bulk Relative Density	N/T			
Finer	art	0.60	98		N/T denotes Not Tested				
ш	<u> </u>	0.30	51		N/A denotes Not Applicable				
		0.15	11						
		0.075	4						

The samples were subjected to analysis according to SABS method 1083:1994.

The results reported relate only to the samples tested.

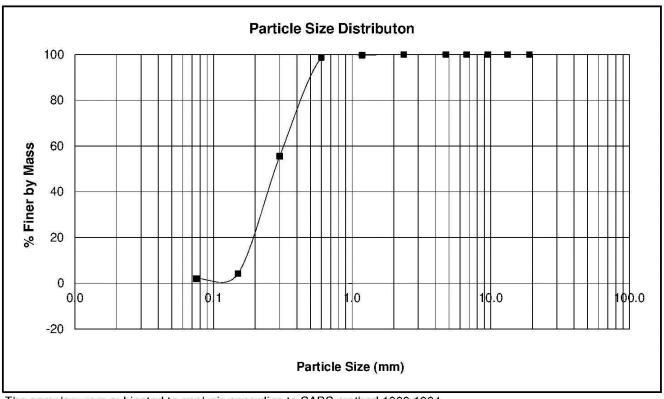
Documents may only be reproduced or published in their full context.

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091

P O Box 82223, Southdale 2135

Tel: +27 (0)11 835-3117 • Fax: +27 (0)11 835-2503 E-mail: jhb@civilab.co.za • Website: www.civilab.co.za



Civil Engineering Testing Laboratories

Fine Aggregate Test Results

Project	15 15	MZIMVUBU WATER PROJECT	Date :	š 6	1 OCTOBER 2013
Project No	ř	2013-B-2004	Lab Sample Reference:		2004-43
Field Reference	ř	S4	Remarks :		<u>u</u>
Organic Impurities	: :	Same as Reference	-		

		Particle Si	ze Distribution		Physica	I Properties	
	Reference Test Sample Specification		Specification	Parameters	Test Sample	Specification	
		19.0	100		Fineness Modulus %	1.42	
		13 . 2	100		Dust Content	2.0	
(9)	(c)	9.5	100		Sand Equivalent %	N/T	
(%) s	(mm)	6.7	100		Moisture Content %	N/T	
Mass	Size (4 . 75	100		Water Absorption %	N/T	
γ		2.36	100		Apparent Relative Density	N/T	
Finer by	Particle	1 . 18	100		Bulk Relative Density	N/T	1
ine	art	0.60	99		N/T denotes Not Tested		
	<u> </u>	0.30	56		N/A denotes Not Applicable		
		0 . 15	4		80 00		
		0.075	2]		

The samples were subjected to analysis according to SABS method 1083:1994.

The results reported relate only to the samples tested.

Documents may only be reproduced or published in their full context.

Prediction of 28-day compressive strength of concrete on the third day using artificial neural networks

Vahid, K. Alilou

ailab@srbiau.ac.ir

Department of Computer Engineering Science and Research Branch, Islamic Azad University, Tehran, Iran Khvoy, 58197-38131, IRAN

Mohammad. Teshnehlab

teshnehlab@eetd.kntu.ac.ir

Department of Electronic Engineering K.N. Toosi University of Technology, Tehran, Iran Tehran, IRAN

Abstract

In recent decades, artificial neural networks are known as intelligent methods for modeling of behavior of physical phenomena. In this paper, implementation of an artificial neural network has been developed for prediction of compressive strength of concrete. A MISO (Multi Input Single Output) adaptive system has been introduced which can model the proposed phenomenon. The data has been collected by experimenting on concrete samples and then the neural network has been trained using these data. From among 432 specimens, 300 data sample has been used for train, 66 data sample for validation and 66 data sample for the final test of the network. The 3-day strength parameter of concrete in the introduced structure also has been used as an important index for predicting the 28-day strength of the concrete. The simulations in this paper are based on real data obtained from concrete samples which indicate the validity of the proposed tool.

Keywords: Concrete, Strength, Prediction, Artificial, Neural Networks.

1. INTRODUCTION

Different sciences are developing fast in today's world. In recent decades, man has seen increased relationship of sciences in different fields and the more relationship has led to the appearance of the more new knowledge and technology. Nowadays, one of the most important problems of man are technical and engineering problems. The complexity of the most of the problems in this field has made the experts of this field use the new mathematical and modeling methods for solving this type of problems. Intelligent systems can be used as suitable tools for identifying complex systems, due to their ability of learning and adaptation.

One of the complex problems in our world is the problem of the concrete. The main criterion for evaluating the compressive strength of concrete is the strength of the concrete on 28th day. The concrete sample is tested after 28 days and the result of this test is considered as a criterion for quality and rigidity of that concrete.

Concrete is the most widely used structural material in constructions in the world. Massive concreting in huge civil projects like dams, power plants, bridges and etc... usually is not practicable and it is necessary to be performed in several layers and the compressive strength of each layer should not be less than the specified compressive strength. Therefore one should wait 28 days to achieve 28-day strength of each layer of concrete. Thereupon if we have n layers of concrete we need $28 \times n$ days to complete the total project. [1]

2. CONCRETE

Concrete is the only major building material that can be delivered to the job site in a plastic state. This unique quality makes concrete desirable as a building material because it can be molded to virtually any form or shape. Concrete provides a wide latitude in surface textures and colors and can be used to construct a wide variety of structures, such as highways and streets, bridges, dams, large buildings, airport runways, irrigation structures, breakwaters, piers and docks, sidewalks, silos and farm buildings, homes, and even barges and ships.

The two major components of concrete are a cement paste and inert materials. The cement paste consists of Portland cement, water, and some air either in the form of naturally entrapped air voids or minute, intentionally entrained air bubbles. The inert materials are usually composed of fine aggregate, which is a material such as sand, and coarse aggregate, which is a material such as gravel, crushed stone, or slag.

When Portland cement is mixed with water, the compounds of the cement react to form a cementing medium. In properly mixed concrete, each particle of sand and coarse aggregate is completely surrounded and coated by this paste, and all spaces between the particles are filled with it. As the cement paste sets and hardens, it binds the aggregates into a solid mass.

Under normal conditions, concrete grows stronger as it grows older. The chemical reactions between cement and water that cause the paste to harden and bind the aggregates together require time. The reactions take place very rapidly at first and then more slowly over a long period of time. [2]

3. CEMENT

Cement is a material that has adhesive and cohesive properties enabling it to bond mineral fragments into a solid mass. Cement consists of silicates and aluminates of lime made from limestone and clay (or shale) which is ground, blended, fused in a kiln and crushed to a powder. Cement chemically combines with water (hydration) to form a hardened mass. The usual hydraulic cement is known as Portland cement because of its resemblance when hardened to Portland stone found near Dorset, England. The name was originated in a patent obtained by Joseph Aspdin of Leeds, England in 1824.

Typical Portland cements are mixtures of tricalcium silicate (3CaO • SiO2), tricalcium aluminate (3CaO • Al2O3), and dicalcium silicate (2CaO • SiO2), in varying proportions, together with small amounts of magnesium and iron compounds. Gypsum is often added to slow the hardening process. [2,3]

4. WATER

The water has two roles in concrete mixture: First is the chemical composition with cement and perform cement hydration and second is to make the concrete composition fluent and workable. The water which is used to make the concrete is drink water. The impurity of water can have undesirable effect on concrete strength. [4]

5. AGGREGATES

Since aggregate usually occupies about 75% of the total volume of concrete, its properties have a definite influence on behavior of hardened concrete. Not only does the strength of the aggregate affect the strength of the concrete, its properties also greatly affect durability (resistance to deterioration under freeze-thaw cycles). Since aggregate is less expensive than cement it is

logical to try to use the largest percentage feasible. Hence aggregates are usually graded by size and a proper mix has specified percentages of both fine and coarse aggregates. Fine aggregate (sand) is any material passing through a No. 4 sieve. Coarse aggregate (gravel) is any material of larger size.

Fine aggregate provides the fineness and cohesion of concrete. It is important that fine aggregate should not contain clay or any chemical pollution. Also, fine aggregate has the role of space filling between coarse aggregates. Coarse aggregate includes: fine gravel, gravel and coarse gravel In fact coarse aggregate comprises the strongest part of the concrete. It also has reverse effect on the concrete fineness. The more coarse aggregate, the higher is the density and the lower is the fineness. [3,5]

6. COMPRESSIVE STRENGTH OF CONCRETE

The strength of concrete is controlled by the proportioning of cement, coarse and fine aggregates, water, and various admixtures. The ratio of the water to cement is the chief factor for determining concrete strength as shown in figure1. The lower the water-cement ratio, the higher is the compressive strength. A certain minimum amount of water is necessary for the proper chemical action in the hardening of concrete; extra water increases the workability (how easily the concrete will flow) but reduces strength. A measure of the workability is obtained by a slump test.

Actual strength of concrete in place in the structure is also greatly affected by quality control procedures for placement and inspection. The strength of concrete is denoted in the United States by f_c which is the compressive strength of test cylinder 6 in. in diameter by 12 in. high measured on the 28th day after they are made. [3]

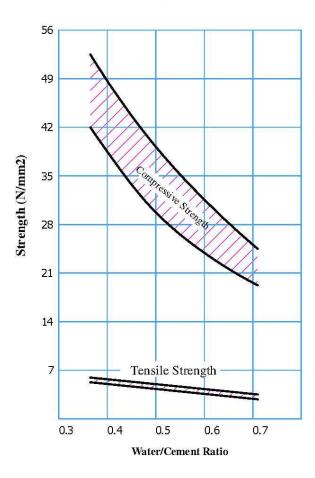


FIGURE 1: illustration of the effect of water/cement ratio in concrete strength [1]

7. CONCRETE SAMPLING

Acceptance of the concrete in the site is performed based on the results of the compressive tests of concrete samples. The concrete samples must be taken from the final consumption place. The purpose of the concrete sampling is to prepare two specimens of concrete which their compressive tests will be performed after 28 days or in any predetermined day. To predict the 28-day compressive strength of concrete we can also have another sample to be tested earlier than 28 days. [1]

8. CONCRETE MIX DESIGN

The concrete mix design is a process of selecting the suitable ingredients of concrete and determining their most optimum proportion which would produce, as economically as possible, concrete that satisfies a certain compressive strength and desired workability. [6]

The concrete mix design is based on the principles of

- Workability
- Desired strength and durability of hardened concrete
- Conditions in site, which helps in deciding workability, strength and durability requirements

9. ADAPTIVE SYSTEMS

Adaptability, in essence, is the ability to react in sympathy with disturbances to the environment. A system that exhibits adaptability is said to be adaptive. Biological systems are adaptive systems; animals, for example, can adapt to changes in their environment through a learning process [7]. A generic adaptive system employed in engineering is shown in Figure 2. It consists of

- set of adjustable parameters (weights) within some filter structure;
- An error calculation block (the difference between the desired response and the output of the filter structure);
- · A control (learning) algorithm for the adaptation of the weights.

The type of learning represented in Figure 2 is so-called supervised learning, since the learning is directed by the desired response of the system. Here, the goal is to adjust iteratively the free parameters (weights) of the adaptive system so as to minimize a prescribed cost function in some predetermined sense. [8]

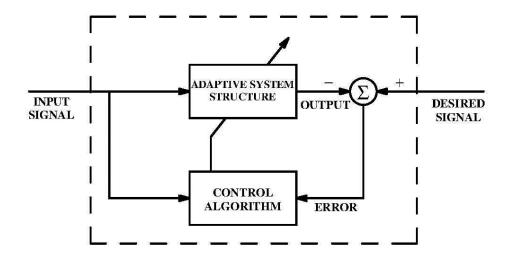


FIGURE 2: Block diagram of an adaptive system

10.ARTIFICIAL NEURAL NETWORKS

Artificial Neural Network (ANN) models have been extensively studied with the aim of achieving human-like performance, especially in the field of pattern recognition and system identification. These networks are composed of a number of nonlinear computational elements which operate in parallel and are arranged in a manner reminiscent of biological neural inter-connections.

The property that is of primary significance for a neural network is the ability of the network to learn from its environment, and to improve its performance through learning. The improvement in performance takes place over time in accordance with some prescribed measure. A neural network learns about its environment through an interactive process of adjustments applied its synaptic weights and bias levels. Ideally, the network becomes more knowledgeable about its environment after each iteration of the learning process. [7]

11. CONCRETE STRENGTH PREDICTION

To predict 28-day strength of concrete, It should identify the effective parameters of the concrete strength. The more accurately identified the parameters, the better is the result.

The studies in this paper were performed in two phases:

- Phase one, includes the studies about the concrete and effective factors of the concrete compressive strength and also performing the experiments in the real environment and collecting data.
- 2. Phase two, include studies about how to use artificial neural networks to identify the presented system and to achieve accurate prediction of concrete 28-day compressive strength. [1]

12. PERFORMING EXPERIMENTS

In this study the ACI method is used to perform experiments. Experiments were performed in Aghchay dam in west Azerbaijan in IRAN. The cement used in the experiments was provided from Sofiyan cement plant and the aggregates were provided from the natural materials of the Aghchay dam site. [1]

13. COLLECTING DATA

There are lots of Parameters affect on compressive strength of concrete. But the most important parameters were collected in table 1. It is important that the range of each parameter is limited due to regarding ACI standard.

TABLE 1: Effective parameters of the compressive strength of the concrete

Row	Parameter	Unit	Range
1	Mix Design	X.	A-L
2	Water/Cement Ratio	%	35.0 - 75.0
3	Density	ton/m3	2.30 - 2.60
4	Slump	mm	70 - 150
5	Air	%	1.0 - 7.0
6	Silica fumes	gr	0 - 400
7	Super-Plasticizer	kg	0.0 - 3.5
8	Age	day	3, 7, 14, 28, 42
9	Compressive Strength	kg/cm2	70.00 - 420.00

The concrete mix design is affected by these factors: Cement, Fine aggregate, Fine gravel, gravel, coarse gravel, air The 1st to 7th parameters are determined in the first day. There is a salient point about 8th parameter (age). As previously mentioned, the concrete age has a direct arithmetic relation with the concrete strength. The more aged the concrete the higher is the compressive strength. [1] Here is an interesting point so that the 3-day compressive strength of concrete has a mathematical relation with the compressive strength of the same concrete in 7th, 14th, 28th and 42th day. Therefore it can be used as an important parameter for prediction of this system. In other words, the 3-day compressive strength of concrete is a very good criterion to achieve the 28-day compressive strength.

It is conceived from figure.3 that the higher the 3-day compressive strength the higher is the 28-day compressive strength of the concrete. Figure.4 shows the relationship between 3-day compressive strength and 28-day compressive strength for 4 types of concrete with variable w/c ratios, this relation is linear relatively.

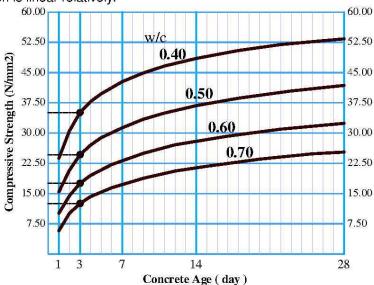


FIGURE 3: illustration of relationship between age and compressive strength of concrete [1]

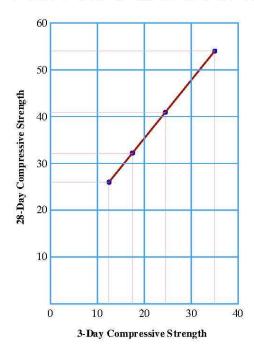


FIGURE 4: illustration of relationship between 3-day and 28-day strength of concrete [1]

14.METHODOLOGY OF CONCRETE STRENGTH NEURAL IDENTIFICATION

A methodology for concrete strength neural identification was developed. It is shown schematically in Figure 5. Three blocks can be distinguished in the scheme. Experimental results, forming a set of data on concrete, used for training and testing the neural network are an integral part of block1.

The experimental results as a set of patterns were saved in a computer file which was then used as the input data for the network in block 2. The data were divided into data for training and testing the neural network. The training patterns were randomly input into the network as following:

- 1. 70% of total data for training of the neural network
- 2. 15% of total data for validation of the neural network
- 3. 15% of total data for testing of the neural network,

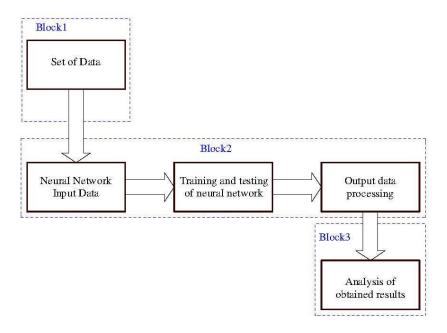


FIGURE 5: Block diagram of concrete compressive strength identification by means of neural networks [9]

If the neural network correctly mapped the training data and correctly identified the testing data, it was considered trained. The obtained results were analyzed in block 3 whose output was identified concrete compressive strength $f_{\rm C}$ [9]

15.FEED-FORWARD NEURAL NETWORK

The Feed-forward neural network structure for prediction of concrete compressive strength is shown in Figure 6. Feed-forward networks often have one or more hidden layers of sigmoid neurons followed by an output layer of linear neurons. Multiple layers of neurons with nonlinear transfer function allow the network to learn nonlinear and linear relationships between inputs and outputs. [10]

The process of learning with teacher in this network is executed through a back-propagation algorithm so that the network output converges to the desired output. The key distinguishing characteristic of this feed-forward neural network with the back-propagation learning algorithm is that it forms a nonlinear mapping from a set of input stimuli to a set of output using features extracted from the input patterns. The network can be designed and trained to accomplish a wide variety of nonlinear mappings, some of which are very complex. This is because the neural units in the neural network learn to respond to features found in the input. [11]

The number of input and output units is determined by dimensions of the data set whereas the number of hidden layer (M) is a free parameter which is adjusted to achieve the maximum performance. Note that, M determines the degree of freedom of the system. Therefore we expect that there was an optimum value for M. The criterion to achieve the optimum M is defined as: "The smallest M which causes minimum mse while the maximum error is small"

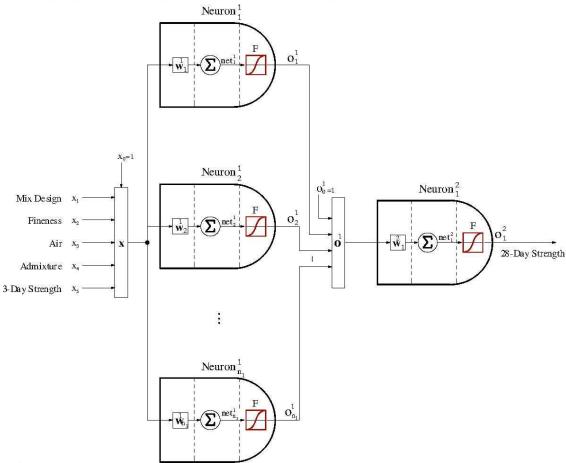


FIGURE 6: Diagram of the feed-forward neural network used for concrete compressive strength prediction

Figure.7 shows the mean squared error of the network output for validation and test data with 10 iterations for each number of hidden neurons. Figure.8 shows the maximum error between desired outputs and the network outputs with 10 iterations for each number of hidden neurons. The optimum value in this structure is to choose M=11 for the number of hidden neurons. In order to backpropagage the error and update the network weights, Gradient-Descent, Quasi-Newton, Conjugate-Gradient and Levenberg-Marquardt Algorithms were used.

Where W is the weight matrix, α is the learning rate, g is the gradient of error and H is the hessian matrix of the cost function. [12]

The levenberg-marquardt algorithm is like quasi-newton but it doesn't need to calculate hessian matrix where it can be estimated as follows:

$$H = J^T J$$
 , $\nabla E = J^T e$
 $W(k+1) = W(k) - [H + \mu I]^{-1} \cdot \nabla E$

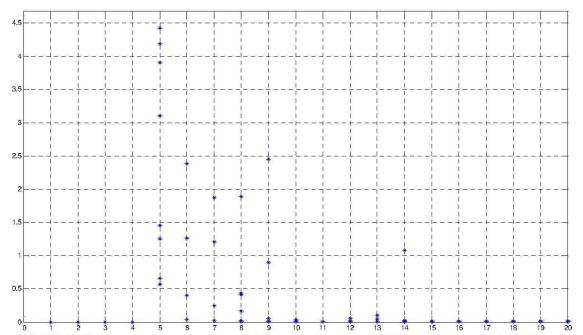


FIGURE 7: Diagram of mean squared error of the network output with 10 iterations for certain number of neurons

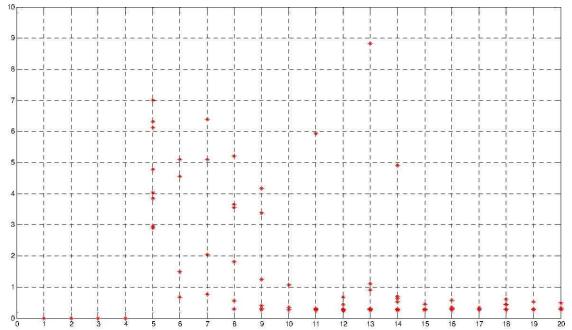


FIGURE 8: Diagram of maximum error of the network output with 10 iterations for certain number of neurons

The results of above algorithms have been collected in Table 2. Each row of the table is the result of average 40 iterations of each method. Evaluation criterion of adaptive systems was defined as following formula:

AveragePercentageError:
$$APE = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{e_i}{T_i} \right| *100\%$$

Where T_i is the desired output and e_i is the output error. [13]

TABLE 1. Commercione o	f different	alma rith page 110	and for mradiati	na tha aanara	to commercación atranath
TABLE 2: Comparison o	ı umerem	algorithms us	seu ioi predicti	ng the concre	te compressive strength

Row	Algorithm		Accuracy on data (%)					
7.575.07		Train	Validation	Test	Total	(second)		
*1	Levenberg-Marquardt	99.436	99.389	99.397	99.407	7.7		
2	Polak-Ribiere Conjugate Gradient	98.861	98.836	98.866	98.854	17.3		
3	Fletcher-Powell Conjugate Gradient	98.713	98.675	98.695	98.694	12.4		
4	Gradient Descent	98.584	98.567	98.606	98.586	24.3		
5	Quasi-Newton	98.388	98.341	98.423	98.384	89.2		
)	epochs				
1	Levenberg-Marquardt	5.830	5.056	4.437	5.108	58		
2	Polak-Ribiere Conjugate Gradient	9.686	8.536	7.652	8.635	571		
3	Fletcher-Powell Conjugate Gradient	10.758	9.457	8.597	9.604	368		
4	Gradient Descent	11.897	10.376	9.018	10.430	1833		
5	Quasi-Newton	13.825	11.539	10.691	12.018	1999		

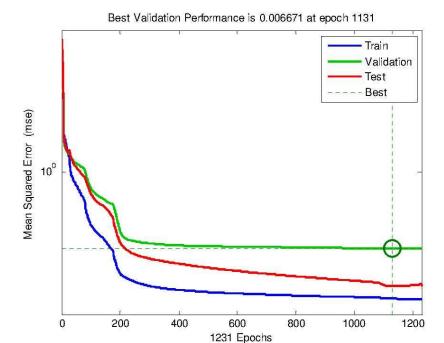


FIGURE 9: Diagram of mean squared error in the feed-forward neural network

It is conceived from table 2, that the best structure for prediction of concrete strength is the first method with levenberg-marquardt algorithm.

Figure 9 shows the mse diagram of the cost function reduction for training, validation and test data. The following results are being conceived from this figure.

- 1. The final mse is small and admissible
- 2. The test dataset error and validation dataset error are almost equal.
- 3. Over fitting was not happened

The diagram of figure 10 also shows the linear regression between network output and desired output for training, validation, test and total data.

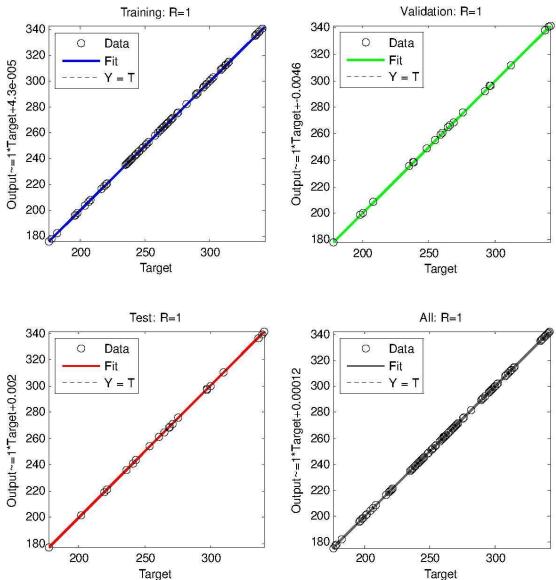


FIGURE 10: Diagram of the network output and desired output for train, validation, test and all data

16. CONCLUSION

In this paper, a practical approach has been presented for prediction of 28-day compressive strength of concrete. Basically, in all of the methods have been resented previously, the 3-day compressive strength of concrete was not considered as an important parameter.

From this point of view we can consider the proposed method as a new method in which the 3-day compressive strength parameter has been introduced as a very important index. [Ref: 13, 14, 15, 16]

The proposed technique can be used as a very useful tool for reducing the duration of the project execution in huge civil projects. For example, imagine if we have a massive concrete structure which requires 10 stages of concreting then we need at least $28 \times 10 = 280$ days to complete the total project regarding to standards. Therefore this project will be finished after about 1 year considering the frigid winter days which concreting is impossible.

Using the proposed tool we can have a precise prediction of the 28-day compressive strength of the concrete on the third day. Thereupon we need $3\times10=30$ days to complete this project and this is an important progress in order to reducing the duration of the civil projects execution.

17. REFERENCES

- 1. V. K. Alilou. "Designing a learning machine for prediction of the compressive strength of the concrete by using Artificial neural networks". M.sc Thesis, Science and Research Branch, Islamic Azad University, Tehran, Iran, August 2009
- 2. "Microsoft Encarta Encyclopedia", Microsoft Corporation, (2009)
- 3. Chu Kia Wang, Charles G. Salmon. "Reinforced Concrete Design", Harper & Row Publishers, USA, (1979)
- 4. M. Teshnehlab, V. K. Alilou, "Concrete strength prediction using learning machine and neural networks". In 2nd Joint Congress on Fuzzy and Intelligent Systems. Tehran, IRAN, 2008
- 5. J.D.Dewar. "Computer Modeling of concrete mixture", E&FN Spon, LONDON, (1999)
- 6. Rishi. Garge. "Concrete Mix Design using Artificial Neural Network". M.sc Thesis, Thapar Institute of Engineering and Technology, June 2003
- 7. Simon Haykin. "Neural Networks A Comprehensive Foundation", Prentice-Hall, (1999)
- 8. Danilo P. Mandic, Jonathon A. Chambers. "Recurrent Neural Networks for Prediction", John Willey & Sons Inc., (2001)
- 9. Jerzy Hola, Krzysztof Schabowicz. "Application of Artificial Neural Networks to determine concrete compressive strength based on non-destructive tests". Journal of civil Engineering and Management, 11(1):23-32, 2005
- 10. Howard Demuth, Mark Beale. "Neural Network Toolbox", Mathworks, (1998)
- 11. Madan M.Gupta, Liang Jin, Noriyasu Homma. "Static and Dynamic Neural Networks", Wiley-Interscience, (2003)
- 12. Martin T. Hagan, Howard B. Demuth, Mark Beale. "Neural Network Design", University of Colorado Bookstore, (1996)
- 13. Ilker Bekir Topcu, Mustafa Saridemir. "Prediction of compressive strength of concrete containing fly ash using Artificial Neural Networks and Fuzzy Logic". ScienceDirect, Computational Materials Science, 41(3):305-311, 2008
- E. Rasa, H. Ketabchi, M. H. Afshar. "Predicting Density and Compressive Strength of Concrete Cement Paste Containing Silica Fume Using Artificial Neural Networks". Scientia Iranica, 16(1):32-42, 2009
- 15. Jong In Kim, Doo Kie Kim. "Application of Neural Networks for Estimation of Concrete Strength". KSCE Journal of Civil Engineering, 6(4):429-438, 2002
- 16. Ji Zong Wang, Xi-Juan Wang, Hong-Guang NI. "An Algorithm of Neural Network and Application to Data Processing in Concrete Engineering". Informatica Institute of Mathematics and Informatics, 14(1):95-110, 2003

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

36/38 Fourth Street, Booysens Reserve, Johannesburg 2091 P O Box 82223, Southdale 2135

Innesburg 2091 GIVIAD

Phone: 27 11 835-3117. Fax: 27 11 835-2503 e-mail: jhb@civilab.co.za * Website: www.civilab.co.za **Civil Engineering Testing Laboratories**

Job No	1	2013-B-2004	Date	24/01//2014
Project	10	MZIMVUBU		

SOLUBLE DELETERIOUS IMPURITIES

Sample No	10 day cube strength of unwashed sand (a)	18 day cube strength of washed sand	*Interpolated 10 day cube strength of washed sand (b)	a/b %
2004-41	10.1	13.5	11.9	85
2004-43	8.4	11.6	10.2	82

NOTES:

Tested according to SABS test methods 834:1994

solDelF2013-B-2004

Investment Facility Company 842 (Pty) Limited trading as **Civileb** Registration No: 98/19071/07 BRANCHES: CENTURION • JOHANNESBURG • RUSTENBURG

^{*} Data interpolated with the aid of page 570 of the International Journal of Engineering, Volume 3: Issue 6. (Submitted with test results)

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES SOILANALYSIS REPORT

012 252 7588 086 243 4281

COMPANY: NAME: Mzimvubu 2013-B-2004 DATE: 2 10 2013

ADRESS: P O Box 82223 Southdale EMAIL: wihan@civilab.co.za 011 835 2503 2135 011 835 3117 FAX: Job NO:

11857 TEL NO:

Lab No	Ref No	Position	Depth(m)	pH (H ₂ O)	Conductivity	Na	Mg	CEC	ESP	EMgP	Na	Ca	Mg	SAR	CI
						me/100gsoil	me/100gsoil								
					mS/m	(cmol(+)/kg	(cmol(+)/kg	cmol(+)/kg			me/I	me/l	me/I		mg/kg
60442	S 2			6.88	5.72	0.04	0.57	1.71	2.49	33.10	0.24	0.89	0.50	0.29	2.66
60443	S 4		1	6.53	4.59	0.04	0.57	1.66	2.51	34.52	0.15	0.04	0.23	0.41	1.26

led-

H 9

WATER

P O Box 1675, Hillcrest, 3650, South Africa. Tel (031) 700 9394 (031) 700 9342 E-mail: contest@contest.co.za Web Page: www.contest.co.za

This report shall not be reproduced, except in full, without the approval of Contest

CJ13/08/739 16 August 2013

Client: Jeffares & Green
Subject: Water Testing

LABORATORY REPORT

CLIENT

Ref:

Jeffares & Green, P O Box 794, HILTON, 3245

SYNOPSIS:

Physical and chemical tests on a sample of water have been provided.

BRIEF FROM CLIENT:

Contest were requested to analyse the samples for;

- Total dissolved solids
- Chloride content
- Calcium hardness as CaCO₃
- pH
- Sulphates (as SO₃)
- Comparative Cubes

SAMPLES:

4 5litres samples of water, referenced, Tsitsa River, by the client, were received on 07.08.2013.

TESTING:

The following test methods were used;

- Total dissolved solids SABS Standard Method 213.
- Chloride content Volhard method typically as described in Quantitative Analytical Chemistry by Fritz & Schenk.
- Calcium Hardness of water SABS Standard Method 216. This does not give the total carbonates and bicarbonates, but simply the calcium hardness or equivalent calcium carbonate in mg/l.
- pH as described in the operating manual of our pH meter a WTW inoLab pH720 meter and using Hanna buffer solutions for calibration.
- Sulphate SABS Standard Method 212.

Adam Investments cc. Reg. No 1988/019362/23 t/a CONTEST Concrete Technology Services
Managing Member: RJL Raw B Tech (Civil Eng)
Members: MT Clark, JS Dunnett, MC Mzobe, VA Horton
Consultant: A J M Horton Pr Tech (Eng), Dip ACT, HND (Chem), HNC (Civ. Eng), FICT, MSA Corr I

Testing, Training and Consulting in Concrete

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

This report shall not be reproduced, except in full, without the approval of Contest

Ref: CJ13/08/739 16 August 2013

Client: Jeffares & Green
Subject: Water Testing

Comparative Cubes

All tests were carried out in duplicate i.e. an A and B sample and the average values determined and reported.

RESULTS:

Chemical Testing:

	Client Sample		
TDS (mg/ℓ)	105.5		
Chloride (Cl⁻) (mg/ℓ)	5.3		
Calcium Hardness as CaCO ₃ (mg/ ℓ)	101.6		
рН	7.75		
Sulphate (SO₃) (mg/ℓ)	None detected		

Physical Testing:

Comparative cubes:

	Control	Sample	Sample as % of Control		
3	MPa	MPa	%		
24hr	4.6	4.5	98		
5d	14.9	15.1	101		
7d	16.8	17.6	105		
28d	tba	tba	tba		

COMMENT:

The results indicate that the water sample is suitable for concrete manufacture.

We have used the following limits based on various sources for a number of years.

	(mg/ℓ)
Total dissolved solids	2000
Chloride (as Cl ⁻)	500
Calcium Hardness(as CaCO ₃)	400
pH	6 to 8

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

This report shall not be reproduced, except in full, without the approval of Contest

Ref: CJ13/08/739 16 August 2013

Client: Jeffares & Green
Subject: Water Testing

Sulphate as SO₃ 1000

These values seem to be conservative based on some of the latest publications; in particular the upper range of pH seems to have been increased substantially, probably with the experience of using wash water in RMC plants.

The ninth edition of Fulton's Concrete Technology states that the mean compressive strength at **seven** days of the test specimen, prepared with the test water, shall be 90% of the mean compressive strength of the corresponding specimens prepared with distilled or deionised water.

However, the eight edition of Fulton's Concrete Technology states that the compressive strength of 'test' cubes at 28 days should be no less than 90% of the control cubes.

BS 3148 has suggested that if the strength is between 80 and 90%, then the water can still be used if the concrete mix proportions are adjusted.

Compressive strength of cubes at 24 hours and 5 days was carried out to determine any early age effect on the concrete strength.

RJL Raw

Mman

B Tech (Civil Eng)

APPENDIX I

LONGITUDINAL SECTION SHOWING RECOMMENDED CUT-OFF EXCAVATION

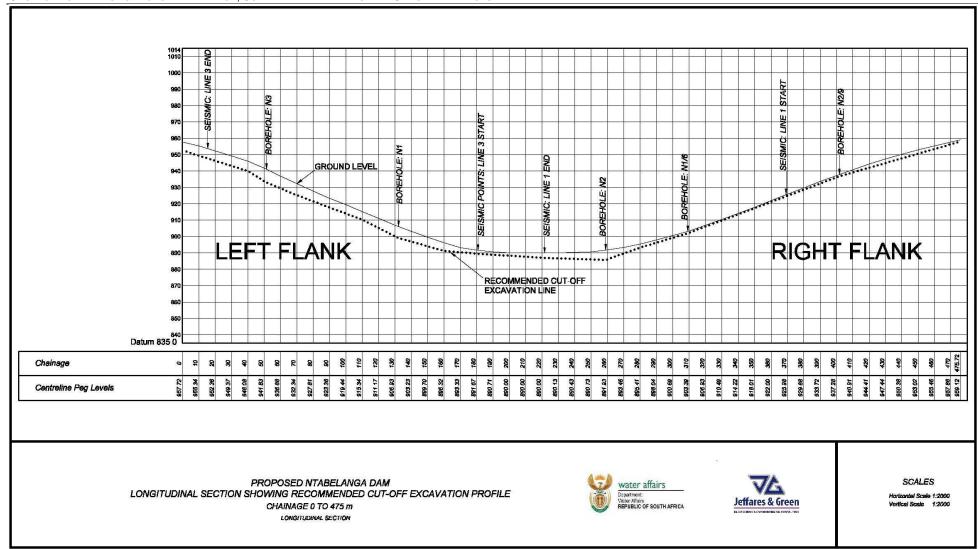


Fig I-1: LS - Recommended Cut-Off Excavation Profile

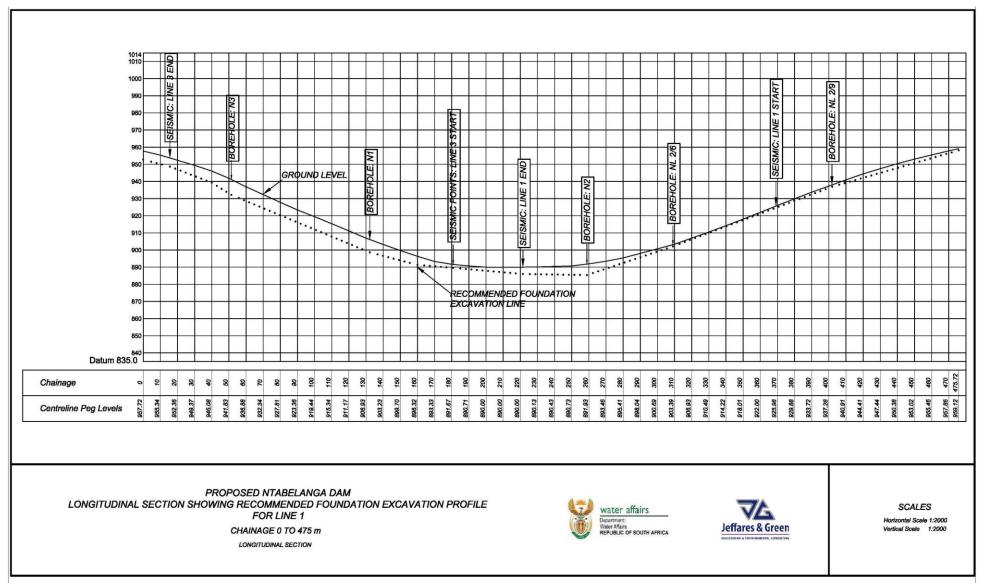


Fig I-2: LS - Recommended Foundation Excavation Profile for Line 1

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

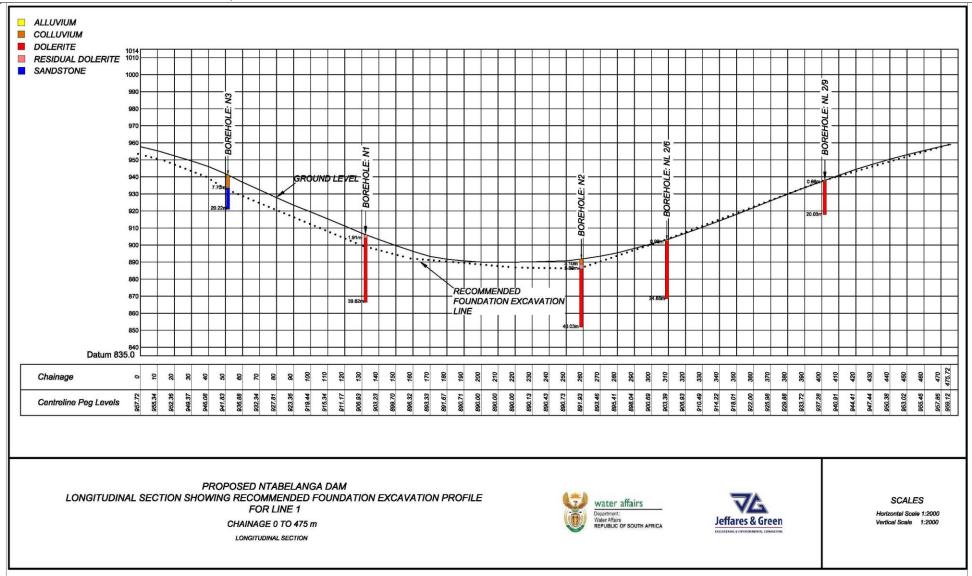


Fig I-3: LS - Recommended Foundation Excavation Profile for Line 1

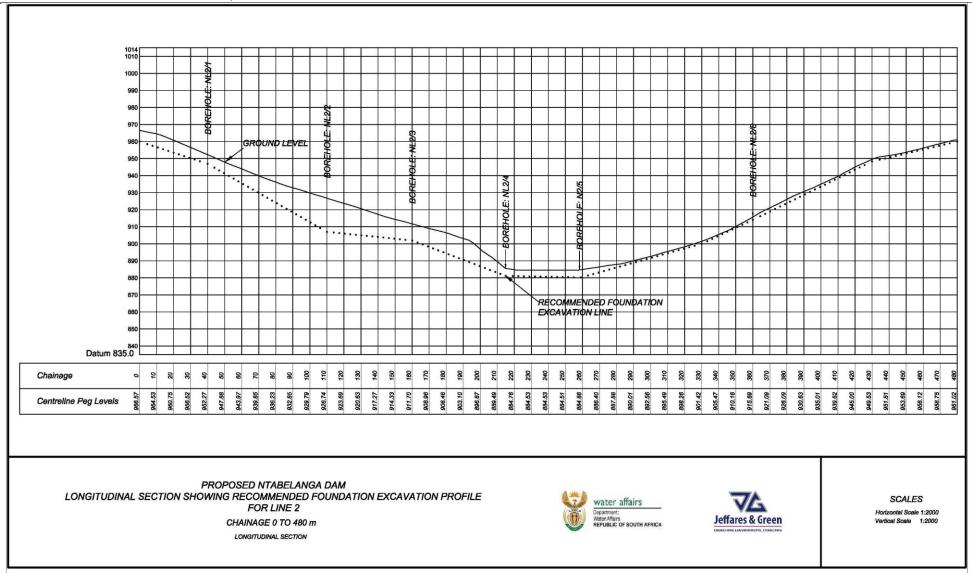


Fig I-4: LS - Recommended Foundation Excavation Profile for Line 2

GEOTECHNICAL INVESTIGATIONS: NTABELANGA, SOMABADI AND THABENG DAM SITES: APPENDICES

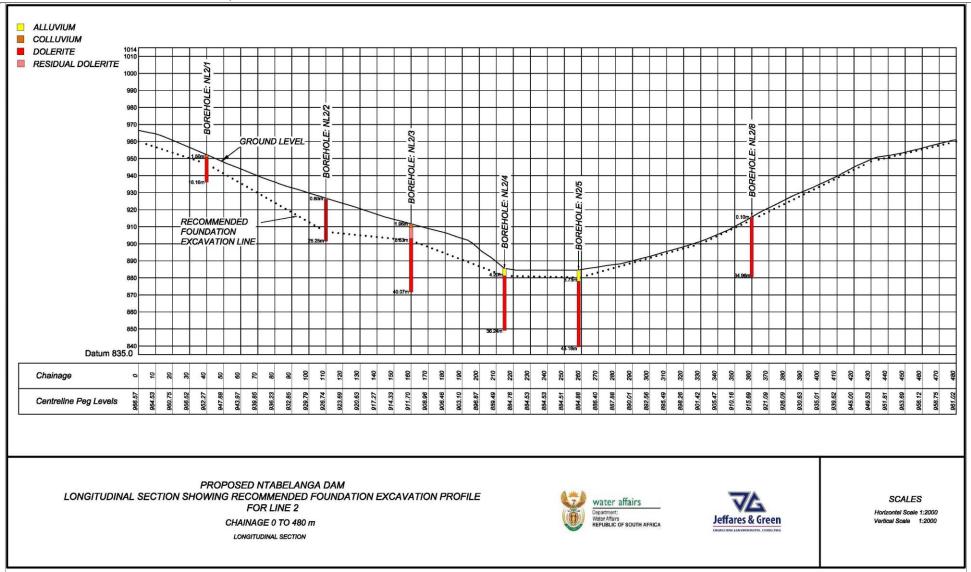


Fig I-5: LS - Recommended Foundation Excavation Profile for Line 2